1
|
Hsu TW, Wang WY, Chen A, Chiu CF, Liao PH, Chen HA, Su CM, Shen SC, Tsai KY, Wang TH, Su YH. Nrf2-mediated adenylosuccinate lyase promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma cells through ferroptosis escape. J Cell Physiol 2024; 239:e31416. [PMID: 39164986 DOI: 10.1002/jcp.31416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Pancreatic cancer has one of the highest fatality rates and the poorest prognosis among all cancer types worldwide. Gemcitabine is a commonly used first-line therapeutic drug for pancreatic cancer; however, the rapid development of resistance to gemcitabine treatment has been observed in numerous patients with pancreatic cancer, and this phenomenon limits the survival benefit of gemcitabine. Adenylosuccinate lyase (ADSL) is a crucial enzyme that serves dual functions in de novo purine biosynthesis, and it has been demonstrated to be associated with clinical aggressiveness, prognosis, and worse patient survival for various cancer types. In the present study, we observed significantly lower ADSL levels in gemcitabine-resistant cells (PANC-1/GemR) than in parental PANC-1 cells, and the knockdown of ADSL significantly increased the gemcitabine resistance of parental PANC-1 cells. We further demonstrated that ADSL repressed the expression of CARD-recruited membrane-associated protein 3 (Carma3), which led to increased gemcitabine resistance, and that nuclear factor erythroid 2-related factor 2 (Nrf2) regulated ADSL expression in parental PANC-1 cells. These results indicate that ADSL is a candidate therapeutic target for pancreatic cancer involving gemcitabine resistance and suggest that the Nrf2/ADSL/Carma3 pathway has therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
Collapse
Affiliation(s)
- Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wan-Yu Wang
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Alvin Chen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ching-Feng Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiang Liao
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsin-An Chen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chiang Shen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Metabolic and Weight Management Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Yen Tsai
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsuan Wang
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Metabolic and Weight Management Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Christopoulou ME, Skandalis SS, Papakonstantinou E, Stolz D, Aletras AJ. WISP1 induces the expression of macrophage migration inhibitory factor in human lung fibroblasts through Src kinases and EGFR-activated signaling pathways. Am J Physiol Cell Physiol 2024; 326:C850-C865. [PMID: 38145300 PMCID: PMC11193488 DOI: 10.1152/ajpcell.00410.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Wnt1-inducible signaling protein 1 (WISP1/CCN4) is a secreted matricellular protein that is implicated in lung and airway remodeling. The macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with chronic lung diseases. In this study, we aimed to investigate the WISP1 signaling pathway and its ability to induce the expression of MIF in primary cultures of fibroblasts from normal human lungs (HLFs). Our results showed that WISP1 significantly stimulated the expression of MIF in a concentration- and time-dependent fashion. In WISP1-induced expression of MIF, αvβ5-integrin and chondroitin sulfate proteoglycans as well as Src tyrosine kinases, MAP kinases, phosphatidylinositol 3-kinase/Akt, PKC, and NF-κB were involved. WISP1-induced expression of MIF was attenuated in the presence of the Src kinase inhibitor PP2 or the MIF tautomerase activity inhibitor ISO-1. Moreover, WISP1 significantly increased the phosphorylation and activation of EGF receptor (EGFR) through transactivation by Src kinases. WISP1 also induced the expression of MIF receptor CD74 and coreceptor CD44, through which MIF exerts its effects on HLFs. In addition, it was found that MIF induced its own expression, as well as its receptors CD74/CD44, acting in an autocrine manner. Finally, WISP1-induced MIF promoted the expression of cyclooxygenase 2, prostaglandin E2, IL-6, and matrix metalloproteinase-2 demonstrating the regulatory role of WISP1-MIF axis in lung inflammation and remodeling involving mainly integrin αvβ5, Src kinases, PKC, NF-κB, and EGFR. The specific signaling pathways involved in WISP1-induced expression of MIF may prove to be excellent candidates for novel targets to control inflammation in chronic lung diseases.NEW & NOTEWORTHY The present study demonstrates for the first time that Wnt1-inducible signaling protein 1 (WISP1) regulates migration inhibitory factor (MIF) expression and activity and identifies the main signaling pathways involved. The newly discovered WISP1-MIF axis may drive lung inflammation and could result in the design of novel targeted therapies in inflammatory lung diseases.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Zhu J, Kassiri Z. Can Good CARMA Prevent Abdominal Aortic Aneurysm? Can J Cardiol 2023; 39:1463-1465. [PMID: 37086836 DOI: 10.1016/j.cjca.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023] Open
Affiliation(s)
- Jiechun Zhu
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Shen W, Wang X, Xiang H, Shichi S, Nakamoto H, Kimura S, Sugiyama K, Taketomi A, Kitamura H. IFN-γ-STAT1-mediated NK2R expression is involved in the induction of antitumor effector CD8 + T cells in vivo. Cancer Sci 2023; 114:1816-1829. [PMID: 36715504 PMCID: PMC10154869 DOI: 10.1111/cas.15738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The induction of antitumor effector T cells in the tumor microenvironment is a crucial event for cancer immunotherapy. Neurokinin receptor 2 (NK2R), a G protein-coupled receptor for neurokinin A (NKA), regulates diverse physiological functions. However, the precise role of NKA-NK2R signaling in antitumor immunity is unclear. Here, we found that an IFN-γ-STAT1 cascade augmented NK2R expression in CD8+ T cells, and NK2R-mediated NKA signaling was involved in inducing antitumor effector T cells in vivo. The administration of a synthetic analog of double-stranded RNA, polyinosinic-polycytidylic acid (poly I:C), into a liver cancer mouse model induced type I and type II IFNs and significantly suppressed the tumorigenesis of Hepa1-6 liver cancer cells in a STAT1-dependent manner. The reduction in tumor growth was diminished by the depletion of CD8+ T cells. IFN-γ stimulation significantly induced NK2R and tachykinin precursor 1 (encodes NKA) gene expression in CD8+ T cells. NKA stimulation combined with anti-CD3 monoclonal antibody (mAb) treatment significantly augmented IFN-γ and granzyme B production by CD8+ T cells compared with the anti-CD3 mAb alone in vitro. ERK1/2 phosphorylation and IκBα degradation in activated CD8+ T cells were suppressed under NK2R deficiency. Finally, we confirmed that tumor growth was significantly increased in NK2R-deficient mice compared with that in wild-type mice, and the antitumor effects of poly I:C were abolished by NK2R absence. These findings suggest that IFN-γ-STAT1-mediated NK2R expression is involved in the induction of antitumor effector T cells in the tumor microenvironment, which contributes to the suppression of cancer cell tumorigenesis in vivo. In this study, we revealed that IFN-γ-STAT1-mediated NK2R expression is involved in the induction of antitumor effector CD8+ T cells in the tumor microenvironment, which contributes to suppressing the tumorigenesis of liver cancer cells in vivo.
Collapse
Affiliation(s)
- Weidong Shen
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Xiangdong Wang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Huihui Xiang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shunsuke Shichi
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroki Nakamoto
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saori Kimura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ko Sugiyama
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Gui Z, Zhang Y, Zhang A, Xia W, Jia Z. CARMA3: A potential therapeutic target in non-cancer diseases. Front Immunol 2022; 13:1057980. [PMID: 36618379 PMCID: PMC9815110 DOI: 10.3389/fimmu.2022.1057980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3 (CARMA3) is a scaffold protein widely expressed in non-hematopoietic cells. It is encoded by the caspase recruitment domain protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1 complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating nuclear factor-κB (NF-κB), a key transcription factor that involves in various biological responses. CARMA3 mediates different receptors-dependent signaling pathways, including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Inappropriate expression and activation of GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human diseases. Emerging studies have reported that CARMA3 mediates the development of various types of cancers. Moreover, CARMA3 and its partners participate in human non-cancer diseases, including atherogenesis, abdominal aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance, inflammatory bowel disease, and psoriasis. Here we provide a review on its structure, regulation, and molecular function, and further highlight recent findings in human non-cancerous diseases, which will provide a novel therapeutic target.
Collapse
Affiliation(s)
- Zhen Gui
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| |
Collapse
|
6
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
7
|
Li Z, Peng F, Liu Z, Li S, Li L, Qian X. Mechanobiological responses of astrocytes in optic nerve head due to biaxial stretch. BMC Ophthalmol 2022; 22:368. [PMID: 36114477 PMCID: PMC9482189 DOI: 10.1186/s12886-022-02592-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Elevated intraocular pressure (IOP) is the main risk factor for glaucoma, which might cause the activation of astrocytes in optic nerve head. To determine the effect of mechanical stretch on the astrocytes, we investigated the changes in cell phenotype, proteins of interest and signaling pathways under biaxial stretch. Method The cultured astrocytes in rat optic nerve head were stretched biaxially by 10 and 17% for 24 h, respectively. Then, we detected the morphology, proliferation and apoptosis of the stretched cells, and performed proteomics analysis. Protein expression was analyzed by Isobaric tags for relative and absolute quantification (iTRAQ) mass spectrometry. Proteins of interest and signaling pathways were screened using Gene Ontology enrichment analysis and pathway enrichment analysis, and the results were verified by western blot and the gene-chip data from Gene Expression Omnibus (GEO) database. Result The results showed that rearrangement of the actin cytoskeleton in response to stimulation by mechanical stress and proliferation rate of astrocytes decreased under 10 and 17% stretch condition, while there was no significant difference on the apoptosis rate of astrocytes in both groups. In the iTRAQ quantitative experiment, there were 141 differential proteins in the 10% stretch group and 140 differential proteins in the 17% stretch group. These proteins include low-density lipoprotein receptor-related protein (LRP6), caspase recruitment domain family, member 10 (CARD10), thrombospondin 1 (THBS1) and tetraspanin (CD81). The western blot results of LRP6, THBS1 and CD81 were consistent with that of iTRAQ experiment. ANTXR2 and CARD10 were both differentially expressed in the mass spectrometry results and GEO database. We also screened out the signaling pathways associated with astrocyte activation, including Wnt/β–catenin pathway, NF-κB signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway, ECM-receptor interaction, and transforming growth factor-β (TGF-β) signaling pathway. Conclusion Mechanical stimulation can induce changes in cell phenotype, some proteins and signaling pathways, which might be associated with astrocyte activation. These proteins and signaling pathways may help us have a better understanding on the activation of astrocytes and the role astrocyte activation played in glaucomatous optic neuropathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02592-8.
Collapse
|
8
|
Sehgal A, Behl T, Singh S, Sharma N, Albratty M, Alhazmi HA, Meraya AM, Aleya L, Sharma A, Bungau S. Exploring the pivotal role of endothelin in rheumatoid arthritis. Inflammopharmacology 2022; 30:1555-1567. [PMID: 36029362 DOI: 10.1007/s10787-022-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
A chronic inflammatory disorder, rheumatoid arthritis (RA) is an autoimmune and systemic disease characterized by progressive and prolonged destruction of joints. This results in increased mortality, physical disability and destruction. Cardiovascular disorders are one of the primary causes of mortality in patients with RA. It is multifactorial in nature and includes genetic, environmental and demographic factors which contribute to the severity of disease. Endothelin-1 (ET-1) is a peptide which acts as a potent vasoconstrictor and is generated through vascular smooth muscle and endothelial cells. Endothelins may be responsible for RA, as under certain circumstances they produce reactive oxygen species which further promote the production of pro-inflammatory cytokines. This enhances the production of superoxide anion, which activates pro-inflammatory cytokines, resulting in RA. The aim of this review is to elucidate the role of endothelin in the progression of RA. This review also summarizes the natural and synthetic anti-inflammatory drugs which have provided remarkable insights in targeting endothelin.
Collapse
Affiliation(s)
- Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.,Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Transcriptomics Changes in the Peritoneum of Mice with Lipopolysaccharide-Induced Peritonitis. Int J Mol Sci 2021; 22:ijms222313008. [PMID: 34884814 PMCID: PMC8657704 DOI: 10.3390/ijms222313008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Peritonitis caused by LPS is a severe clinical challenge, which causes organ damage and death. However, the mechanism of LPS-induced peritonitis has not been fully revealed yet. Here, we investigated the transcriptome profile of the peritoneal tissue of LPS-induced peritonitis in mice. A model of LPS-induced peritonitis in mice was established (LPS 10 mg/kg, i.p.), and the influence of TAK 242 (TLR4 inhibitor) on the level of inflammatory cytokines in mouse peritoneal lavage fluid was investigated by using an ELISA test. Next, the peritoneal tissues of the three groups of mice (Control, LPS, and LPS+TAK 242) (n = 6) were isolated and subjected to RNA-seq, followed by a series of bioinformatics analyses, including differentially expressed genes (DEGs), enrichment pathway, protein-protein interaction, and transcription factor pathway. Then, qPCR verified-hub genes that may interact with TAK 242 were obtained. Subsequently, the three-dimensional structure of hub proteins was obtained by using homology modeling and molecular dynamics optimization (300 ns). Finally, the virtual docking between TAK 242 and hub proteins was analyzed. Our results showed that TAK 242 significantly inhibited the production of inflammatory cytokines in the peritoneal lavage fluid of mice with peritonitis, including IL-6, IFN-γ, IL-1β, NO, and TNF-α. Compared with the Control group, LPS treatment induced 4201 DEGs (2442 down-regulated DEGs and 1759 up-regulated DEGs). Compared with the LPS group, 30 DEGs were affected by TAK 242 (8 down-regulated DEGs and 22 up-regulated DEGs). A total of 10 TAK 242-triggered hub genes were obtained, and the possible docking modes between TAK 242 and hub proteins were acquired. Overall, our data demonstrated that a large number of DEGs were affected in LPS-triggered peritonitis mice. Moreover, the TLR4 inhibitor TAK 242 is capable of suppressing the inflammatory response of LPS-induced peritonitis. Our work provides clues for understanding the pathogenesis of LPS-induced peritonitis in mice.
Collapse
|
10
|
Chang TY, Wu CT, Sheu ML, Yang RS, Liu SH. CARMA3 Promotes Colorectal Cancer Cell Motility and Cancer Stemness via YAP-Mediated NF-κB Activation. Cancers (Basel) 2021; 13:cancers13235946. [PMID: 34885061 PMCID: PMC8657120 DOI: 10.3390/cancers13235946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary CARMA3 is overexpressed in most cancers, and its expression is positively associated with poor prognosis. In this study, we evaluated the detailed mechanisms of CARMA3-mediated CRC metastasis. We found that overexpression of CARMA3 induced the expression of YAP and NF-κB activation, then elicited EMT induction to enhance cell migration and invasion. We demonstrate for the first time that YAP is a critical downstream regulator of CARMA3 in CRC. Our findings reveal a regulation axis between CARMA3 and Hippo oncoprotein YAP and further support the potential role of CARMA3 in the metastasis and cancer stemness of CRC. Abstract CARD-recruited membrane-associated protein 3 (CARMA3) is overexpressed in various cancers and is associated with cancer cell proliferation, metastasis, and tumor progression; however, the underlying mechanisms of CARMA3 in colorectal cancer (CRC) metastasis remain unclear. Here, we found that higher CARMA3 expression was correlated with poor overall survival and metastasis in CRC patients from the TNMplot database and Human Tissue Microarray staining. Elevating CARMA3 expression promoted cell proliferation, epithelial-mesenchymal transition (EMT) induction, migration/invasion abilities, sphere formation, and cancer stem cell markers expression. Knockdown of CARMA3 decreased these processes via the EMT-related transcription factor Slug. Moreover, CARMA3 depletion significantly reduced tumor growth in mice that were consistent with the in vitro results. CRC migration/invasion could be regulated by CARMA3/YAP/Slug signaling axis using genetic inhibition of Yes-associated protein (YAP). Interestingly, CARMA3 induced activation of nuclear factor (NF)-κB through YAP expression, contributing to upregulation of Slug. YAP expression positively correlated with CARMA3, NF-κB, and Slug gene expression and poor clinical outcomes in CRC patients. Our findings demonstrate for the first time that CARMA3 plays an important role in CRC progression, which may serve as a potential diagnostic biomarker and candidate therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan;
- Master Program for Food and Drug Safety, China Medical University, Taichung 406040, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| |
Collapse
|
11
|
Shi D, Zhang Z, Kong C. CARMA3 Transcriptional Regulation of STMN1 by NF-κB Promotes Renal Cell Carcinoma Proliferation and Invasion. Technol Cancer Res Treat 2021; 20:15330338211027915. [PMID: 34190011 PMCID: PMC8256254 DOI: 10.1177/15330338211027915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CARD-containing MAGUK protein 3 (CARMA3) is associated with tumor occurrence and progression. However, the signaling pathways involved in CARMA3 function remain unclear. We aimed to analyze the association between CARMA3 and stathmin (STMN1) through the NF-κB pathway, which is associated with cell proliferation and invasion, in clear cell renal cell carcinoma (ccRCC). We evaluated the effects of CARMA3 and STMN1 expression on cell migration, proliferation, and invasion in various cell lines, and their expression in tissue samples from patients with ccRCC. CARMA3 was highly expressed in ccRCC tissues and cell lines. Moreover, CARMA3 promoted the proliferation and invasion of RCC cells by activating the NF-κB pathway to transcribe STMN1. Stathmin exhibited a consistent profile with CARMA3 in ccRCC tissue, and could be an effector for CARMA3-activated cell proliferation and invasion of ccRCC cells. In summary, CARMA3 may serve as a promising target for ccRCC treatment.
Collapse
Affiliation(s)
- Du Shi
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
CARD10 cleavage by MALT1 restricts lung carcinoma growth in vivo. Oncogenesis 2021; 10:32. [PMID: 33824280 PMCID: PMC8024357 DOI: 10.1038/s41389-021-00321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.
Collapse
|
13
|
Lan L, Xu M, Li J, Liu L, Xu M, Zhou C, Shen L, Tang Z, Wan F. Mas-related G protein-coupled receptor D participates in inflammatory pain by promoting NF-κB activation through interaction with TAK1 and IKK complex. Cell Signal 2020; 76:109813. [DOI: 10.1016/j.cellsig.2020.109813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/28/2023]
|
14
|
Birch CA, Molinar-Inglis O, Trejo J. Subcellular hot spots of GPCR signaling promote vascular inflammation. ACTA ACUST UNITED AC 2020; 16:37-42. [PMID: 32838054 PMCID: PMC7431397 DOI: 10.1016/j.coemr.2020.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G-coupled protein receptors (GPCRs) comprise the largest class of druggable targets. Signaling by GPCRs is initiated from subcellular hot spots including the plasma membrane, signalosomes, and endosomes to contribute to vascular inflammation. GPCR-G protein signaling at the plasma membrane causes endothelial barrier disruption and also cross-talks with growth factor receptors to promote proinflammatory signaling. A second surge of GPCR signaling is initiated by cytoplasmic NFκB activation mediated by β-arrestins and CARMA-BCL10-MALT1 signalosomes. Once internalized, ubiquitinated GPCRs initiate signaling from endosomes via assembly of the transforming growth factor-β-activated kinase binding protein-1 (TAB1)-TAB2-p38 MAPK complex to promote vascular inflammation. Understanding the complexities of GPCR signaling is critical for development of new strategies to treat vascular inflammation such as that associated with COVID-19.
Collapse
Key Words
- Arrestins
- B-cell lymphoma protein 10, (BCL10)
- COVID-19
- Endosomes
- Endothelial
- G protein-coupled receptor, GPCR
- JAK-STAT
- Janus kinase, JAK
- MALT1
- NFκB
- adherens junctions, AJ
- angiotensin II type 1 receptor, AT1
- angiotensin converting enzyme-2, ACE2
- caspase recruitment domain-containing protein, CARMA
- coronavirus disease of 2019, COVID-19
- fibroblast-growth-factor, FGF
- inhibitor of NFκB kinase, IKK
- mitogen-activated protein kinase, MAPK
- mucosa-associated lymphoid tissue lymphoma translocation protein 1, (MALT1)
- neural precursor cell expressed developmentally downregulated protein 4, NEDD4
- nuclear factor kappa-light-chain-enhancer of activated B cells, NFκB
- p38 MAPK
- platelet activating factor, PAF
- protease-activated receptor-1, PAR1
- severe acute respiratory syndrome coronavirus 2, SARS-CoV-2
- signal transducer and activator of transcription, STAT
- transforming growth factor-α-activated kinase binding protein-1, TAB1
Collapse
Affiliation(s)
- Cierra A Birch
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Olivia Molinar-Inglis
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Peng L, He K, Cao Z, Bi L, Yu D, Wang Q, Wang J. CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Mol Med Rep 2020; 21:329-337. [PMID: 31939627 PMCID: PMC6896372 DOI: 10.3892/mmr.2019.10840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/22/2019] [Indexed: 01/29/2023] Open
Abstract
Previous studies have demonstrated that the expression of CARD10 is closely associated with the occurrence of tumors, and its role is mainly to promote tumor progression by activating the transcription factor NF‑κB. However, the signaling pathway in renal cancer remains unclear. The objective of the present study was to investigate the ability of caspase recruitment domain 10 (CARD10) to regulate the NF‑κB signaling pathway and promote the progression of renal cell carcinoma (RCC). Expression of CARD10 in ACHN, 786‑O and HK‑2 cells was evaluated via western blot analysis, as was the epidermal growth factor (EGF)‑induced activation of NF‑κB signaling pathway‑related proteins in cells. The expression of CARD10 was inhibited by CARD10 short hairpin RNA transfection. Cell cycle analysis and MTT assays were used to evaluate cell proliferation. Cell apoptosis was analyzed via flow cytometry. The invasion of renal cell lines was detected via Transwell cell migration and invasion assays in vitro. The results showed that CARD10 expression was significantly higher in RCC cells than in normal renal tubular epithelial cells. CARD10 silencing inhibited the proliferation, invasion and migration of RCC cells. EGF stimulation upregulated the activation of the NF‑κB pathway in RCC cells. Inhibition of CARD10 expression inhibited NF‑κB activation in RCC cells. Taken together, these data suggested that CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Thus, this indicated that CARD10 may be a novel therapeutic target in RCC.
Collapse
Affiliation(s)
- Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ke He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qi Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
16
|
Wang Z, Hutcherson SM, Yang C, Jattani RP, Tritapoe JM, Yang YK, Pomerantz JL. Coordinated regulation of scaffold opening and enzymatic activity during CARD11 signaling. J Biol Chem 2019; 294:14648-14660. [PMID: 31391255 PMCID: PMC6779434 DOI: 10.1074/jbc.ra119.009551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
The activation of key signaling pathways downstream of antigen receptor engagement is critically required for normal lymphocyte activation during the adaptive immune response. CARD11 is a multidomain signaling scaffold protein required for antigen receptor signaling to NF-κB, c-Jun N-terminal kinase, and mTOR. Germline mutations in the CARD11 gene result in at least four types of primary immunodeficiency, and somatic CARD11 gain-of-function mutations drive constitutive NF-κB activity in diffuse large B cell lymphoma and other lymphoid cancers. In response to antigen receptor triggering, CARD11 transitions from a closed, inactive state to an open, active scaffold that recruits multiple signaling partners into a complex to relay downstream signaling. However, how this signal-induced CARD11 conversion occurs remains poorly understood. Here we investigate the role of Inducible Element 1 (IE1), a short regulatory element in the CARD11 Inhibitory Domain, in the CARD11 signaling cycle. We find that IE1 controls the signal-dependent Opening Step that makes CARD11 accessible to the binding of cofactors, including Bcl10, MALT1, and the HOIP catalytic subunit of the linear ubiquitin chain assembly complex. Surprisingly, we find that IE1 is also required at an independent step for the maximal activation of HOIP and MALT1 enzymatic activity after cofactor recruitment to CARD11. This role of IE1 reveals that there is an Enzymatic Activation Step in the CARD11 signaling cycle that is distinct from the Cofactor Association Step. Our results indicate that CARD11 has evolved to actively coordinate scaffold opening and the induction of enzymatic activity among recruited cofactors during antigen receptor signaling.
Collapse
Affiliation(s)
- Zhaoquan Wang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rakhi P Jattani
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia M Tritapoe
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
17
|
Hou H, Li WX, Cui X, Zhou DC, Zhang B, Geng XP. CARMA3/NF-κB signaling contributes to tumorigenesis of hepatocellular carcinoma and is inhibited by sodium aescinate. World J Gastroenterol 2019; 25:5483-5493. [PMID: 31576094 PMCID: PMC6767988 DOI: 10.3748/wjg.v25.i36.5483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/13/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary hepatocellular carcinoma (HCC) is a very malignant tumor in the world. CARMA3 plays an oncogenic role in the pathogenesis of various tumors. However, the function of CARMA3 in HCC has not been fully clarified.
AIM To study the biological function of CAEMA3 in HCC.
METHODS Tissue microarray slides including tissues form 100 HCC patients were applied to access the expression of CARMA3 in HCC and its clinical relevance. Knockdown and overexpression of CARMA3 were conducted with plasmid transfection. MTT, colony formation, and apoptosis assays were performed to check the biological activity of cells.
RESULTS Higher expression of CARMA3 in HCC was relevant to poor prognostic survival (P < 0.05). Down-regulation of CARMA3 inhibited proliferation and colony formation and induced apoptosis in HCC cell lines, while increasing its expression promoted tumorigenesis. We also found that sodium aescinate (SA), a natural herb extract, exerted anti-proliferation effects in HCC cells by suppressing the CARMA3/nuclear factor kappa-B (NF-κB) pathway.
CONCLUSION Overexpression of CARMA3 in HCC tissues correlates with a poor prognosis in HCC patients. CARMA3 acts pro-tumorigenic effects partly through activation of CARMA3/NF-κB. SA inhibits HCC growth by targeting CARMA3/NF-κB.
Collapse
Affiliation(s)
- Hui Hou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Wei-Xiang Li
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiao Cui
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Da-Chen Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Bin Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiao-Ping Geng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
18
|
Jin S, Zhou R, Guan X, Zhou J, Liu J. Identification of novel key lncRNAs involved in periodontitis by weighted gene co‐expression network analysis. J Periodontal Res 2019; 55:96-106. [PMID: 31512745 DOI: 10.1111/jre.12693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/21/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Su‐Han Jin
- Department of Orthodontics Affiliated Stomatological Hospital of Zunyi Medical University Zunyi China
| | - Rui‐Hao Zhou
- Department of Anaesthesiology West China Hospital, Sichuan University Chengdu China
| | - Xiao‐Yan Guan
- Department of Orthodontics Affiliated Stomatological Hospital of Zunyi Medical University Zunyi China
| | - Jian‐Guo Zhou
- Department of Oncology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Jian‐Guo Liu
- School of Stomatology Zunyi Medical University Zunyi China
- Special Key Laboratory of Oral Diseases Research Higher Education Institution Zunyi China
| |
Collapse
|