1
|
Bhatt A, Gupta P, Furie R, Vashistha H. A focused report on IFN-1 targeted therapies for lupus erythematosus. Expert Opin Investig Drugs 2025; 34:121-129. [PMID: 40047795 DOI: 10.1080/13543784.2025.2473060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/24/2025] [Indexed: 03/21/2025]
Abstract
INTRODUCTION Patients with Systemic Lupus Erythematosus (SLE) experience varied manifestations and unpredictable flares, complicating treatment and drug development. Despite these challenges, anifrolumab, voclosporin, and belimumab were approved by FDA. These treatments complement, but don't replace, traditional therapies like NSAIDs, corticosteroids, antimalarials, and immunosuppressives. Therefore, there remains an unmet need for more effective medications targeting excessive proinflammatory cytokines in SLE patients. AREAS COVERED This review summarizes the clinical trial outcomes of four upcoming medications targeting cytokine activity: Litifilimab showed a 7-point reduction in CLASI-A in its phase II trial. Daxdilimab was unsuccessful in its phase II trial. Anifrolumab reduced SLE activity in both phase II and III trials. Deucravacitinib decreased disease activity by multiple measures in its phase II trial. EXPERT OPINION High levels of IFN-I (type 1 interferon) are present in most SLE patients, making this pathway an attractive target for drug development. Litifilimab downregulates IFN-I by targeting BDCA2, while dexadilimab targets ILT7 to recruit effector cells, reducing IFN-I production by killing PDCs. Anifrolumab binds to the IFN-I receptor, blocking the activity of all IFN-Is, and deucravacitinib reduces IFN-I by inhibiting TYK2, thereby interfering with downstream signaling. Therapies that target IFN-I represents a promising class of medications for SLE patients.
Collapse
Affiliation(s)
- Anushka Bhatt
- Division of Rheumatology, Department of Medicine, Northwell Health, Great Neck, NY, USA
| | - Pramiti Gupta
- McCombs school, University of Texas, Austin, TX, USA
| | - Richard Furie
- Division of Rheumatology, Department of Medicine, Northwell Health, Great Neck, NY, USA
| | - Himanshu Vashistha
- Division of Rheumatology, Department of Medicine, Northwell Health, Great Neck, NY, USA
| |
Collapse
|
2
|
Bai L, Zhu J, Ma W, Zhao P, Li F, Zhang C, Zhang S. A novel mouse model of myositis-associated interstitial lung disease was established by using TLR9 agonist combined with muscle homogenate. Clin Exp Immunol 2025; 219:uxae106. [PMID: 39575634 PMCID: PMC11773800 DOI: 10.1093/cei/uxae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025] Open
Abstract
Our group previously demonstrated that NETs were involved in interstitial lung diseases (ILD) among patients with idiopathic inflammatory myopathies (IIM) and the experimental autoimmune myositis (EAM) mouse model and that NETs activated lung fibroblasts through the TLR9-miR7-Smad2 axis. This study aimed to establish a novel mouse model of myositis-associated interstitial lung disease (MAILD) by using a TLR9 agonist (ODN2395). ODN2395 and muscle homogenate were used to induce MAILD in BALB/c mice. MAILD was evaluated using histopathology, immunohistochemistry, serum NETs determination, and myositis-specific antibody profile. Furthermore, TLR9 and IRF3 were examined in a lung biopsy tissue from a dermatomyositis patient with ILD. MAILD mice developed inflammatory myopathy with positive expression of myositis-specific antibodies. ILD occurred in all mice of the MAILD group. ODN2395 at doses of 5 μg, 10 μg, or 20 μg induced ILD, with increasing severity as the dose increased, but 20 μg ODN2395 was not recommended due to non-specific damage to the lungs. ILD could occur as early as one week after immunization and was most pronounced by the fourth/fifth week. MAILD process was accompanied by NETs infiltration and TLR9 activation. TLR9 activation was demonstrated in the patient with DM-ILD. Serum levels of Cit-H3 were elevated in the MAILD group. Skeletal muscle homogenate and ODN2395 induced neutrophils to form NETs in vitro. Combined with muscle homogenate, ODN2395 induced a novel MAILD mouse model with NETs infiltration and TLR9 activation, which are similar to pathogenesis of IIM-ILD, suggesting that MAILD model could replace EAM model in IIM-ILD research.
Collapse
Affiliation(s)
- Ling Bai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Pediatric Cardiology, Kidney Disease and Rheumatology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Jiarui Zhu
- Department of Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenlan Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Peipei Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feifei Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Cen Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Sigong Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Snow Z, Seely K, Barrett S, Pecha J, Goldhardt R. Target in Sight: A Comprehensive Review of Hydroxychloroquine-Induced Bull's Eye Maculopathy. CURRENT OPHTHALMOLOGY REPORTS 2024; 12:38-48. [PMID: 39371107 PMCID: PMC11452169 DOI: 10.1007/s40135-024-00321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 10/08/2024]
Abstract
Purpose of Review We review the latest screening and diagnostic techniques, and the most recent recommendations on the management of hydroxychloroquine retinopathy. Recent Findings Hydroxychloroquine (HCQ) has been shown to cause retinal toxicity in a dose-dependent fashion. Early diagnosis is critical as the resultant retinopathy is not reversible. New imaging modalities, such as adaptive optics (AO), microperimetry, and retro-mode imaging, may show promise in the timely diagnosis of HCQ retinopathy. Summary Automated visual fields and spectral-domain optical coherence tomography (SD-OCT) are the primary tests used in routine screening for HCQ retinopathy, but fundus autofluorescence (FAF) and multifocal electroretinogram (mfERG) have also been shown to be useful. A baseline ophthalmologic examination is recommended in all patients beginning long-term hydroxychloroquine therapy within the first year of starting therapy. Automated visual fields and SD-OCT should be included during this baseline exam in patients with pre-existing macular conditions. Afterwards, annual screening can be deferred for the first 5 years of HCQ treatment unless the patient has a major risk factor.
Collapse
Affiliation(s)
- Zachary Snow
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Kai Seely
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Spencer Barrett
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Joseph Pecha
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Raquel Goldhardt
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| |
Collapse
|
4
|
Vazquez T, Patel J, Kodali N, Diaz D, Bashir MM, Chin F, Keyes E, Sharma M, Sprow G, Grinnell M, Dan J, Werth VP. Plasmacytoid Dendritic Cells Are Not Major Producers of Type 1 IFN in Cutaneous Lupus: An In-Depth Immunoprofile of Subacute and Discoid Lupus. J Invest Dermatol 2024; 144:1262-1272.e7. [PMID: 38086428 DOI: 10.1016/j.jid.2023.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 03/12/2024]
Abstract
The immunologic drivers of cutaneous lupus erythematosus (CLE) and its clinical subtypes remain poorly understood. We sought to characterize the immune landscape of discoid lupus erythematosus and subacute CLE using multiplexed immunophenotyping. We found no significant differences in immune cell percentages between discoid lupus erythematosus and subacute CLE (P > .05) with the exception of an increase in TBK1 in discoid lupus erythematosus (P < .05). Unbiased clustering grouped subjects into 2 major clusters without respect to clinical subtype. Subjects with a history of smoking had increased percentages of neutrophils, disease activity, and endothelial granzyme B compared with nonsmokers. Despite previous assumptions, plasmacytoid dendritic cells (pDCs) did not stain for IFN-1. Skin-eluted and circulating pDCs from subjects with CLE expressed significantly less IFNα than healthy control pDCs upon toll-like receptor 7 stimulation ex vivo (P < .0001). These data suggest that discoid lupus erythematosus and subacute CLE have similar immune microenvironments in a multiplexed investigation. Our aggregated analysis of CLE revealed that smoking may modulate disease activity in CLE through neutrophils and endothelial granzyme B. Notably, our data suggest that pDCs are not the major producers of IFN-1 in CLE. Future in vitro studies to investigate the role of pDCs in CLE are needed.
Collapse
Affiliation(s)
- Thomas Vazquez
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jay Patel
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nilesh Kodali
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Felix Chin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Dan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
6
|
Tay SH, Zharkova O, Lee HY, Toh MMX, Libau EA, Celhar T, Narayanan S, Ahl PJ, Ong WY, Joseph C, Lim JCT, Wang L, Larbi A, Liang S, Lateef A, Akira S, Ling LH, Thamboo TP, Yeong JPS, Lee BTK, Edwards SW, Wright HL, MacAry PA, Connolly JE, Fairhurst AM. Platelet TLR7 is essential for the formation of platelet-neutrophil complexes and low-density neutrophils in lupus nephritis. Rheumatology (Oxford) 2024; 63:551-562. [PMID: 37341646 PMCID: PMC10836995 DOI: 10.1093/rheumatology/kead296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease. METHODS Flow cytometry was used to immunophenotype LDNs from SLE patients and controls. The association of LDNs with organ damage was investigated in a cohort of 290 SLE patients. TLR7 mRNA expression was assessed in LDNs and high-density neutrophils (HDNs) using publicly available mRNA sequencing datasets and our own cohort using RT-PCR. The role of TLR7 in platelet binding was evaluated in platelet-HDN mixing studies using TLR7-deficient mice and Klinefelter syndrome patients. RESULTS SLE patients with active disease have more LDNs, which are heterogeneous and more immature in patients with evidence of kidney dysfunction. LDNs are platelet bound, in contrast to HDNs. LDNs settle in the peripheral blood mononuclear cell (PBMC) layer due to the increased buoyancy and neutrophil degranulation from platelet binding. Mixing studies demonstrated that this PNC formation was dependent on platelet-TLR7 and that the association results in increased NETosis. The neutrophil:platelet ratio is a useful clinical correlate for LDNs, and a higher NPR is associated with past and current flares of LN. CONCLUSIONS LDNs sediment in the upper PBMC fraction due to PNC formation, which is dependent on the expression of TLR7 in platelets. Collectively, our results reveal a novel TLR7-dependent crosstalk between platelets and neutrophils that may be an important therapeutic opportunity for LN.
Collapse
Affiliation(s)
- Sen Hee Tay
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Olga Zharkova
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Yin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michelle Min Xuan Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eshele Anak Libau
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Teja Celhar
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sriram Narayanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patricia Jennifer Ahl
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wei Yee Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Craig Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shen Liang
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aisha Lateef
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
| | | | - Lieng Hsi Ling
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Hospital, Singapore
| | | | - Joe Poh Seng Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore
| | - Bernett Teck Kwong Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Helen L Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Paul Anthony MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John E Connolly
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Anna-Marie Fairhurst
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
7
|
Lim D, Kleitsch J, Werth VP. Emerging immunotherapeutic strategies for cutaneous lupus erythematosus: an overview of recent phase 2 and 3 clinical trials. Expert Opin Emerg Drugs 2023; 28:257-273. [PMID: 37860982 DOI: 10.1080/14728214.2023.2273536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Cutaneous lupus erythematosus (CLE) is an autoimmune disease that is clinically heterogenous and may occur with or without the presence of systemic lupus erythematosus (SLE). While existing on a spectrum, CLE and SLE present differences in their underlying pathogenesis and therapeutic responses. No new therapies have been approved in recent decades by the U.S. Food and Drug Administration for CLE, although frequently refractory to conventional therapies. There is an unmet need to develop effective drugs for CLE as it significantly impacts patients' quality of life and may leave irreversible disfiguring damage. AREAS COVERED This review provides an update on the latest phase 2 and 3 clinical trials performed in CLE or SLE using skin-specific outcome measures. Emergent therapies are presented alongside their mechanism of action as recent translational studies have permitted identification of critical targets among immune cells and/or pathways involved in CLE. EXPERT OPINION While the recent literature has few trials for CLE, drugs targeting type I interferon, its downstream signaling and plasmacytoid dendritic cells have shown promising results. Further research is required to develop long-awaited effective therapies, and this review highlights the importance of implementing trials dedicated to CLE to fill the current gap in CLE therapeutics.
Collapse
Affiliation(s)
- Darosa Lim
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
- Perelman School of Medicine, Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Julianne Kleitsch
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
- Perelman School of Medicine, Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
- Perelman School of Medicine, Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Ghincea A, Woo S, Sheeline Y, Pivarnik T, Fiorini V, Herzog EL, Ryu C. Mitochondrial DNA Sensing Pathogen Recognition Receptors in Systemic Sclerosis Associated Interstitial Lung Disease: A Review. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2023; 9:204-220. [PMID: 38230363 PMCID: PMC10791121 DOI: 10.1007/s40674-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 01/18/2024]
Abstract
Purpose of the review Systemic sclerosis (SSc) is a condition of dermal and visceral scar formation characterized by immune dysregulation and inflammatory fibrosis. Approximately 90% of SSc patients develop interstitial lung disease (ILD), and it is the leading cause of morbidity and mortality. Further understanding of immune-mediated fibroproliferative mechanisms has the potential to catalyze novel treatment approaches in this difficult to treat disease. Recent findings Recent advances have demonstrated the critical role of aberrant innate immune activation mediated by mitochondrial DNA (mtDNA) through interactions with toll-like receptor 9 (TLR9) and cytosolic cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). Summary In this review, we will discuss how the nature of the mtDNA, whether oxidized or mutated, and its mechanism of release, either intracellularly or extracellularly, can amplify fibrogenesis by activating TLR9 and cGAS, and the novel insights gained by interrogating these signaling pathways. Because the scope of this review is intended to generate hypotheses for future research, we conclude our discussion with several important unanswered questions.
Collapse
Affiliation(s)
- Alexander Ghincea
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Samuel Woo
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Yu Sheeline
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Taylor Pivarnik
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Vitoria Fiorini
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Erica L. Herzog
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
- Department of Experimental Pathology, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Changwan Ryu
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| |
Collapse
|
9
|
In 't Veld AE, Grievink HW, van der Plas JL, Eveleens Maarse BC, van Kraaij SJW, Woutman TD, Schoonakker M, Klarenbeek NB, de Kam ML, Kamerling IMC, Jansen MAA, Moerland M. Immunosuppression by hydroxychloroquine: mechanistic proof in in vitro experiments but limited systemic activity in a randomized placebo-controlled clinical pharmacology study. Immunol Res 2023; 71:617-627. [PMID: 36811819 PMCID: PMC9945836 DOI: 10.1007/s12026-023-09367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Based on its wide range of immunosuppressive properties, hydroxychloroquine (HCQ) is used for the treatment of several autoimmune diseases. Limited literature is available on the relationship between HCQ concentration and its immunosuppressive effect. To gain insight in this relationship, we performed in vitro experiments in human PBMCs and explored the effect of HCQ on T and B cell proliferation and Toll-like receptor (TLR)3/TLR7/TLR9/RIG-I-induced cytokine production. In a placebo-controlled clinical study, these same endpoints were evaluated in healthy volunteers that were treated with a cumulative dose of 2400 mg HCQ over 5 days. In vitro, HCQ inhibited TLR responses with IC50s > 100 ng/mL and reaching 100% inhibition. In the clinical study, maximal HCQ plasma concentrations ranged from 75 to 200 ng/mL. No ex vivo HCQ effects were found on RIG-I-mediated cytokine release, but there was significant suppression of TLR7 responses and mild suppression of TLR3 and TLR9 responses. Moreover, HCQ treatment did not affect B cell and T cell proliferation. These investigations show that HCQ has clear immunosuppressive effects on human PBMCs, but the effective concentrations exceed the circulating HCQ concentrations under conventional clinical use. Of note, based on HCQ's physicochemical properties, tissue drug concentrations may be higher, potentially resulting in significant local immunosuppression. This trial is registered in the International Clinical Trials Registry Platform (ICTRP) under study number NL8726.
Collapse
Affiliation(s)
- Aliede E In 't Veld
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Hendrika W Grievink
- Centre for Human Drug Research, Leiden, The Netherlands
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan L van der Plas
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Boukje C Eveleens Maarse
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, The Netherlands.
- Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
10
|
Nakamura H, Tanaka T, Ji Y, Zheng C, Afione SA, Warner BM, Oliveira FR, Motta ACF, Rocha EM, Noguchi M, Atsumi T, Chiorini JA. Salivary gland LAMP3 mRNA expression is a possible predictive marker in the response to hydroxychloroquine in Sjögren's disease. PLoS One 2023; 18:e0282227. [PMID: 36821638 PMCID: PMC9949663 DOI: 10.1371/journal.pone.0282227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Hydroxychloroquine (HCQ) is a lysosomotropic agent that is commonly used for treating Sjögren's disease (SjD). However, its efficacy is controversial because of the divergent response to the drug among patients. In a subgroup of SjD patients, lysosome-associated membrane protein 3 (LAMP3) is elevated in expression in the salivary glands and promotes lysosomal dysregulation and lysosome-dependent apoptotic cell death. In this study, chloroquine (CQ) and its derivative HCQ were tested for their ability to prevent LAMP3-induced apoptosis, in vitro and on a mouse model of SjD. In addition, efficacy of HCQ treatment was retrospectively compared between high LAMP3 mRNA expression in minor salivary glands and those with LAMP3 mRNA levels comparable with healthy controls. Study results show that CQ treatment stabilized the lysosomal membrane in LAMP3-overexpressing cells via deactivation of cathepsin B, resulting in decreased apoptotic cell death. In mice with established SjD-like phenotype, HCQ treatment also significantly decreased apoptotic cell death and ameliorated salivary gland hypofunction. Retrospective analysis of SjD patients found that HCQ tended to be more effective in improving disease activity index, symptom severity and hypergammaglobulinemia in patients with high LAMP3 expression compared those with normal LAMP3 expression. Taken together, these findings suggested that by determining salivary gland LAMP3 mRNA level, a patient's response to HCQ treatment could be predicted. This finding may provide a novel strategy for guiding the development of more personalized medicine for SjD.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Tsutomu Tanaka
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Youngmi Ji
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Changyu Zheng
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Sandra A. Afione
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Blake M. Warner
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Fabiola Reis Oliveira
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina F. Motta
- Department of Stomatology, Public Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Eduardo M. Rocha
- Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
11
|
Psarras A, Vital EM. Anti-BDCA2 Antibody for Cutaneous Lupus Erythematosus. N Engl J Med 2022; 387:1529. [PMID: 36260802 DOI: 10.1056/nejmc2211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Yamakawa N, Tago F, Nakai K, Kitahara Y, Ikari S, Hojo S, Hall N, Aluri J, Hussein Z, Gevorkyan H, Maruyama T, Ishizaka S, Yagi T. First-in-Human Study of the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of E6742, a Dual Antagonist of Toll-like Receptors 7 and 8, in Healthy Volunteers. Clin Pharmacol Drug Dev 2022; 12:363-375. [PMID: 36219471 DOI: 10.1002/cpdd.1176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
The first-in-human phase I study for E6742, a dual toll-like receptor (TLR) 7 and TLR8 antagonist, has been conducted to assess the safety, tolerability, and pharmacokinetics of E6742 in healthy volunteers. In a single ascending dose (SAD) study, 42 subjects received 10-800 mg of E6742 in the fasted state, as well as a 100-mg cohort in the fed state for evaluating the effect of food. In a multiple ascending dose (MAD) study, 18 subjects received 100-400 mg of E6742 twice daily for 7 days. E6742 was rapidly absorbed with a median tmax ranging from 1.50 to 2.50 hours across dose groups under the fasted condition, and eliminated with a median t½ ranging from 2.37 to 14.4 hours. After multiple oral doses, a steady state was reached by day 7. In the SAD study, dose proportionality was observed for Cmax , AUC(0-t) , and AUC(0-inf) values of E6742 up to 800 mg, but these values were slightly less than dose proportional at 10 mg. In the MAD study, the Cmax and AUC(0-12h)ss of E6742 appeared to be almost dose proportionally increased between 100 and 200 mg, while these parameters showed more than a dose proportional increase at 400 mg. In addition to safety and good tolerability, this study demonstrated cytokine concentrations in cultured peripheral blood in response to E6742 were suppressed in a dose-dependent manner. Further clinical studies targeting systemic lupus erythematosus patients are currently underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hakop Gevorkyan
- California Clinical Trials Medical Group in affiliation with PAREXEL, Glendale, Glendale, California, USA
| | - Tatsuya Maruyama
- Clinical Research Promotion Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Sally Ishizaka
- Eisai Inc./Eisai Center for Genetics Guided Dementia Discovery, Cambridge, Massachusetts, USA
| | | |
Collapse
|
13
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
14
|
Werth VP, Furie RA, Romero-Diaz J, Navarra S, Kalunian K, van Vollenhoven RF, Nyberg F, Kaffenberger BH, Sheikh SZ, Radunovic G, Huang X, Clark G, Carroll H, Naik H, Gaudreault F, Meyers A, Barbey C, Musselli C, Franchimont N. Trial of Anti-BDCA2 Antibody Litifilimab for Cutaneous Lupus Erythematosus. N Engl J Med 2022; 387:321-331. [PMID: 35939578 DOI: 10.1056/nejmoa2118024] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dose-Response Relationship, Drug
- Double-Blind Method
- Herpes Zoster/etiology
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/immunology
- Lupus Erythematosus, Cutaneous/drug therapy
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Severity of Illness Index
- Treatment Outcome
Collapse
Affiliation(s)
- Victoria P Werth
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Richard A Furie
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Juanita Romero-Diaz
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Sandra Navarra
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Kenneth Kalunian
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Ronald F van Vollenhoven
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Filippa Nyberg
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Benjamin H Kaffenberger
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Saira Z Sheikh
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Goran Radunovic
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Xiaobi Huang
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - George Clark
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Hua Carroll
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Himanshu Naik
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Francois Gaudreault
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Adam Meyers
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Catherine Barbey
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Cristina Musselli
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Nathalie Franchimont
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| |
Collapse
|
15
|
Dima A, Jurcut C, Chasset F, Felten R, Arnaud L. Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge. Ther Adv Musculoskelet Dis 2022; 14:1759720X211073001. [PMID: 35186126 PMCID: PMC8848057 DOI: 10.1177/1759720x211073001] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
The antimalarial hydroxychloroquine (HCQ) has demonstrated several crucial properties for the treatment of systemic lupus erythematosus (SLE). Herein, we reviewed the main HCQ pharmacologic features, detailed its mechanism of action, and summarized the existing guidelines and recommendations for HCQ use in rheumatology with a systematic literature search for the randomized controlled trials focused on lupus. HCQ has been shown to decrease SLE activity, especially in mild and moderate disease, to prevent disease flare and to lower the long-term glucocorticoid need. The numerous benefits of HCQ are extended to pregnancy and breastfeeding period. Based on cohort studies, antithrombotic and metabolic HCQ’s effects were shown, including lipid-lowering properties, which might contribute to an improved cardiovascular risk. Moreover, early HCQ use in antinuclear antibodies positive individuals might delay the progression to SLE. Finally, HCQ has a significant favorable impact on long-term outcomes such as damage accrual and mortality in SLE. Based on these multiple benefits, HCQ is now the mainstay long-term treatment in SLE, recommended by current guidelines in all patients unless contraindications or side effects. The daily dose associated with the best compromise between efficacy and safety is matter of debate. The concern regarding retinal toxicity rather than proper efficacy data is the one that dictated the daily dosage of ⩽5 mg/kg/day actual body weight currently agreed upon.
Collapse
Affiliation(s)
- Alina Dima
- Department of Rheumatology, Colentina Clinical Hospital, Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - François Chasset
- Department of Dermatology and Allergology, Hôpital Tenon, Paris, France; Faculté de Médecine, Sorbonne Université, Paris, France
| | - Renaud Felten
- National Reference Center for Rare Auto-immune and Systemic Diseases Est Sud-Est (RESO), Strasbourg, France
- Department of Rheumatology, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Arnaud
- National Reference Center for Rare Auto-immune and Systemic Diseases Est Sud-Est (RESO), Strasbourg, France
- Department of Rheumatology, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Inserm UMR-S 1109, Strasbourg, France
- Service de Rhumatologie, Hôpital de Hautepierre, 1, avenue Molière BP 83049, 67098 Strasbourg Cedex, France
| |
Collapse
|
16
|
Morell M, Varela N, Castillejo-López C, Coppard C, Luque MJ, Wu YY, Martín-Morales N, Pérez-Cózar F, Gómez-Hernández G, Kumar R, O'Valle F, Alarcón-Riquelme ME, Marañón C. SIDT1 plays a key role in type I IFN responses to nucleic acids in plasmacytoid dendritic cells and mediates the pathogenesis of an imiquimod-induced psoriasis model. EBioMedicine 2022; 76:103808. [PMID: 35065421 PMCID: PMC8784643 DOI: 10.1016/j.ebiom.2021.103808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background Type I IFN (IFN-I) is a family of cytokines involved in the pathogenesis of autoimmune and autoinflammatory diseases such as psoriasis. SIDT1 is an ER-resident protein expressed in the lymphoid lineage, and involved in anti-viral IFN-I responses in vivo, through an unclear mechanism. Herein we have dissected the role of SIDT1 in the natural IFN-producing cells, the plasmacytoid dendritic cells (pDC). Methods The function of SIDT1 in pDC was determined by silencing its expression in human primary pDC and GEN2.2 cell line. SIDT1 role in vivo was assessed using the imiquimod-induced psoriasis model in the SIDT1-deficient mice (sidt1−/−). Findings Silencing of SIDT1 in GEN2.2 led to a blockade of the IFN-I response after stimulation of TLR7 and TLR9, without affecting the pro-inflammatory responses or upregulation of maturation markers. We found that SIDT1 migrates from the ER to the endosomal and lysosomal compartments together with TLR9 after CpG stimulation, participating in the access of the TLR9-CpG complex to lysosome-related vesicles, and therefore mediating the activation of TBK1 and the nuclear migration of IRF7, but not of NF-κB. sidt1−/− mice showed a significant decrease in severity parameters of the imiquimod-induced acute psoriasis-like model, associated with a decrease in the production of IFN-I and IFN-dependent chemokines. Interpretation Our findings indicate that SIDT1 is at the cross-road between the IFN-I and the proinflammatory pathways and constitutes a promising drug target for psoriasis and other diseases mediated by IFN-I responses. Funding This work was supported by the Consejería de Salud y Familias de la Junta de Andalucía (PIER_S1149 and C2_S0050) and Instituto de Salud Carlos III (PI18/00082 and PI21/01151), partly supported by European FEDER funds, and prior funding to MEAR from the Alliance for Lupus Research and the Swedish Research Council.
Collapse
Affiliation(s)
- María Morell
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Nieves Varela
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Casimiro Castillejo-López
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Céline Coppard
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - María José Luque
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Ying-Yu Wu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, University of Granada, Spain; Department of Oral Surgery, School of Dentistry, University of Granada, Spain
| | - Francisco Pérez-Cózar
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Gonzalo Gómez-Hernández
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Ramesh Kumar
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Francisco O'Valle
- Department of Pathology, School of Medicine, University of Granada, Spain; Ibs.GRANADA and IBIMER Institutes, Spain
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Concepción Marañón
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain.
| |
Collapse
|
17
|
Wilson NR, Bover L, Konopleva M, Han L, Neelapu S, Pemmaraju N. CD303 (BDCA-2) - a potential novel target for therapy in hematologic malignancies. Leuk Lymphoma 2021; 63:19-30. [PMID: 34486917 DOI: 10.1080/10428194.2021.1975192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) serve as immunoregulatory antigen-presenting cells that play a role in various inflammatory, viral, and malignant conditions. Malignant proliferation of pDCs is implicated in the pathogenesis of certain hematologic cancers, specifically blastic plasmacytoid dendritic cell neoplasm (BPDCN) and acute myelogenous leukemia with clonal expansion of pDC (pDC-AML). In recent years, BPDCN and pDC-AML have been successfully treated with targeted therapy of pDC-specific surface marker, CD123. However, relapsed and refractory BPDCN remains an elusive cancer, with limited therapeutic options. CD303 is another specific surface marker of human pDCs, centrally involved in antigen presentation and immune tolerance. Monoclonal antibodies directed against CD303 have been studied in preclinical models and have achieved disease control in patients with cutaneous lupus erythematosus. We performed a comprehensive review of benign and malignant disorders in which CD303 have been studied, as there may be a potential future CD303-directed therapy for many of these conditions.
Collapse
Affiliation(s)
- Nathaniel R Wilson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Bover
- Departments of Genomic Medicine and Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lina Han
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
19
|
Hannon CW, McCourt C, Lima HC, Chen S, Bennett C. Interventions for cutaneous disease in systemic lupus erythematosus. Cochrane Database Syst Rev 2021; 3:CD007478. [PMID: 33687069 PMCID: PMC8092459 DOI: 10.1002/14651858.cd007478.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lupus erythematosus is an autoimmune disease with significant morbidity and mortality. Cutaneous disease in systemic lupus erythematosus (SLE) is common. Many interventions are used to treat SLE with varying efficacy, risks, and benefits. OBJECTIVES To assess the effects of interventions for cutaneous disease in SLE. SEARCH METHODS We searched the following databases up to June 2019: the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, Wiley Interscience Online Library, and Biblioteca Virtual em Saude (Virtual Health Library). We updated our search in September 2020, but these results have not yet been fully incorporated. SELECTION CRITERIA We included randomised controlled trials (RCTs) of interventions for cutaneous disease in SLE compared with placebo, another intervention, no treatment, or different doses of the same intervention. We did not evaluate trials of cutaneous lupus in people without a diagnosis of SLE. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Primary outcomes were complete and partial clinical response. Secondary outcomes included reduction (or change) in number of clinical flares; and severe and minor adverse events. We used GRADE to assess the quality of evidence. MAIN RESULTS Sixty-one RCTs, involving 11,232 participants, reported 43 different interventions. Trials predominantly included women from outpatient clinics; the mean age range of participants was 20 to 40 years. Twenty-five studies reported baseline severity, and 22 studies included participants with moderate to severe cutaneous lupus erythematosus (CLE); duration of CLE was not well reported. Studies were conducted mainly in multi-centre settings. Most often treatment duration was 12 months. Risk of bias was highest for the domain of reporting bias, followed by performance/detection bias. We identified too few studies for meta-analysis for most comparisons. We limited this abstract to main comparisons (all administered orally) and outcomes. We did not identify clinical trials of other commonly used treatments, such as topical corticosteroids, that reported complete or partial clinical response or numbers of clinical flares. Complete clinical response Studies comparing oral hydroxychloroquine against placebo did not report complete clinical response. Chloroquine may increase complete clinical response at 12 months' follow-up compared with placebo (absence of skin lesions) (risk ratio (RR) 1.57, 95% confidence interval (CI) 0.95 to 2.61; 1 study, 24 participants; low-quality evidence). There may be little to no difference between methotrexate and chloroquine in complete clinical response (skin rash resolution) at 6 months' follow-up (RR 1.13, 95% CI 0.84 to 1.50; 1 study, 25 participants; low-quality evidence). Methotrexate may be superior to placebo with regard to complete clinical response (absence of malar/discoid rash) at 6 months' follow-up (RR 3.57, 95% CI 1.63 to 7.84; 1 study, 41 participants; low-quality evidence). At 12 months' follow-up, there may be little to no difference between azathioprine and ciclosporin in complete clinical response (malar rash resolution) (RR 0.83, 95% CI 0.46 to 1.52; 1 study, 89 participants; low-quality evidence). Partial clinical response Partial clinical response was reported for only one key comparison: hydroxychloroquine may increase partial clinical response at 12 months compared to placebo, but the 95% CI indicates that hydroxychloroquine may make no difference or may decrease response (RR 7.00, 95% CI 0.41 to 120.16; 20 pregnant participants, 1 trial; low-quality evidence). Clinical flares Clinical flares were reported for only two key comparisons: hydroxychloroquine is probably superior to placebo at 6 months' follow-up for reducing clinical flares (RR 0.49, 95% CI 0.28 to 0.89; 1 study, 47 participants; moderate-quality evidence). At 12 months' follow-up, there may be no difference between methotrexate and placebo, but the 95% CI indicates there may be more or fewer flares with methotrexate (RR 0.77, 95% CI 0.32 to 1.83; 1 study, 86 participants; moderate-quality evidence). Adverse events Data for adverse events were limited and were inconsistently reported, but hydroxychloroquine, chloroquine, and methotrexate have well-documented adverse effects including gastrointestinal symptoms, liver problems, and retinopathy for hydroxychloroquine and chloroquine and teratogenicity during pregnancy for methotrexate. AUTHORS' CONCLUSIONS Evidence supports the commonly-used treatment hydroxychloroquine, and there is also evidence supporting chloroquine and methotrexate for treating cutaneous disease in SLE. Evidence is limited due to the small number of studies reporting key outcomes. Evidence for most key outcomes was low or moderate quality, meaning findings should be interpreted with caution. Head-to-head intervention trials designed to detect differences in efficacy between treatments for specific CLE subtypes are needed. Thirteen further trials are awaiting classification and have not yet been incorporated in this review; they may alter the review conclusions.
Collapse
Affiliation(s)
- Cora W Hannon
- Dermatologist, Masters of Public Health Program, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Hermenio C Lima
- Department of Dermatology, Clinical Unit for Research Trials and Outcomes in Skin (CURTIS), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Suephy Chen
- Emory University Hospital, Emory Healthcare, Atlanta, Georgia, USA
| | - Cathy Bennett
- Office of Research and Innovation, Royal College of Surgeons in Ireland Coláiste Ríoga na Máinleá in Éirinn, Dublin, Ireland
| |
Collapse
|
20
|
Hydroxychloroquine Effects on TLR Signalling: Underexposed but Unneglectable in COVID-19. J Immunol Res 2021; 2021:6659410. [PMID: 33763494 PMCID: PMC7949870 DOI: 10.1155/2021/6659410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
The main basis for hydroxychloroquine (HCQ) treatment in COVID-19 is the compound's ability to inhibit viral replication in vitro. HCQ also suppresses immunity, mainly by interference in TLR signalling, but reliable clinical data on the extent and nature of HCQ-induced immunosuppression are lacking. Here, we discuss the mechanistic basis for the use of HCQ against SARS-CoV-2 in a prophylactic setting and in a therapeutic setting, at different stages of the disease. We argue that the clinical effect of prophylactic or therapeutic HCQ treatment in COVID-19 depends on the balance between inhibition of viral replication, immunosuppression, and off-target side effects, and that the outcome is probably dependent on disease stage and disease severity. This is supported by the initial outcomes of the well-designed randomized controlled trials: so far, evidence for a beneficial effect of HCQ treatment for COVID-19 is weak and conflicting.
Collapse
|
21
|
Turnier JL, Kahlenberg JM. The Role of Cutaneous Type I IFNs in Autoimmune and Autoinflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 205:2941-2950. [PMID: 33229366 DOI: 10.4049/jimmunol.2000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
IFNs are well known as mediators of the antimicrobial response but also serve as important immunomodulatory cytokines in autoimmune and autoinflammatory diseases. An increasingly critical role for IFNs in evolution of skin inflammation in these patients has been recognized. IFNs are produced not only by infiltrating immune but also resident skin cells, with increased baseline IFN production priming for inflammatory cell activation, immune response amplification, and development of skin lesions. The IFN response differs by cell type and host factors and may be modified by other inflammatory pathway activation specific to individual diseases, leading to differing clinical phenotypes. Understanding the contribution of IFNs to skin and systemic disease pathogenesis is key to development of new therapeutics and improved patient outcomes. In this review, we summarize the immunomodulatory role of IFNs in skin, with a focus on type I, and provide insight into IFN dysregulation in autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Turnier
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
22
|
DiNicolantonio JJ, Barroso-Aranda J, McCarty MF. Azithromycin and glucosamine may amplify the type 1 interferon response to RNA viruses in a complementary fashion. Immunol Lett 2020; 228:83-85. [PMID: 33002511 PMCID: PMC7521214 DOI: 10.1016/j.imlet.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Previous research demonstrates that, in clinically relevant concentrations, azithromycin can boost the ability of RNA viruses to induce type 1 interferon by amplifying the expression and virally-mediated activation of MDA5. O-GlcNAcylation of MAVS, a down-stream target of MDA5, renders it more effective for type 1 interferon induction. High-dose glucosamine administration up-regulates O-GlcNAcylation by increasing the cellular pool of UDP-N-acetylglucosamine. Hence, it is proposed that joint administration of azithromycin and high-dose glucosamine, early in the course of RNA virus infections, may interact in a complementary fashion to aid their control by enhancing type 1 interferon induction.
Collapse
|
23
|
Kłosowicz A, Pastuszczak M, Dyduch G, Englert K, Łukasik A, Wojas-Pelc A. Dendritic cells as predictive markers of responsiveness to hydroxychloroquine treatment in primary cicatricial alopecia patients. Dermatol Ther 2020; 33:e14509. [PMID: 33150719 DOI: 10.1111/dth.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/29/2022]
Abstract
Primary cicatricial alopecia (PCA) encompasses a diverse group of inflammatory diseases characterized by the irreversible replacement of hair follicle structures by fibrous tissue. Although the pathogenesis of PCA remains not fully understood, the key to its understanding might be the location of dendritic cells (DCs) inflammatory infiltrate. One of the systemic therapy of choice in PCA patients is hydroxychloroquine (HCQ). We hypothesized that DCs are implicated in PCA pathogenesis and that they might constitute the biological target of HCQ treatment. For these reasons, we investigated whether DCs could affect the antimalarial responsiveness, and if DCs might be used as predictive factor of responsiveness to HCQ. In this retrospective cohort study, 65 patients diagnosed with PCA were grouped accordingly to their response to HCQ therapy. Skin biopsies had been taken before the treatment was started. Cell count was performed on immunohistochemistry by using characteristic monoclonal antibodies to specific subpopulations of DCs. In almost every second patient (47.7%), we observed remission of the disease during HCQ treatment. The number of plasmacytoid and myeloid DCs as well as Langerhans cells in lesional skin of HCQ responders was higher in comparison with HCQ nonresponders. Moreover, in a predictive model receiver operating characteristic (ROC curve) we showed that plasmacytoid DCs might be used as a predictive factor of responsiveness to HCQ. The results of this study are important as identifying biomarkers for responsiveness to a HCQ therapy will be helpful to individualize treatment and make it more effective.
Collapse
Affiliation(s)
- Agata Kłosowicz
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Maciej Pastuszczak
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College in Krakow, Kraków, Poland
| | - Karolina Englert
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Adriana Łukasik
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, University Hospital in Krakow, Kraków, Poland
| |
Collapse
|
24
|
Luo S, Long H, Lu Q. Recent advances in understanding pathogenesis and therapeutic strategies of Systemic Lupus Erythematosus. Int Immunopharmacol 2020; 89:107028. [PMID: 33039962 DOI: 10.1016/j.intimp.2020.107028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multi-system-involving autoimmune disorder mainly affecting young and middle-aged women. Autoantibodies formation and immune complex deposition as well as other immune mechanisms contribute to heterogeneous clinical presentation, which leads to challenges for diagnosis and management. Although the exact pathogenesis of SLE is highly complicated, the pathophysiological understanding of SLE is constantly evolving and relevant studies were continually published, providing a better understanding of the molecular mechanisms. Moreover, new therapeutic strategies and management plans targeting pivotal factors involved in the pathogenesis of SLE got well established recently. In this article, we reviewed recent studies to provide an update in understanding pathogenesis and therapeutic strategies of SLE.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
25
|
Zhou X, Yan J, Lu Q, Zhou H, Fan L. The pathogenesis of cutaneous lupus erythematosus: The aberrant distribution and function of different cell types in skin lesions. Scand J Immunol 2020; 93:e12933. [PMID: 32654170 DOI: 10.1111/sji.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease with a broad range of cutaneous manifestations. In skin lesions of CLE, keratinocytes primarily undergo apoptosis. Interferon-κ(IFN-κ) is belonged to type I interferons (type I IFNs) and is selectively produced by keratinocytes. Recently, keratinocytes selectively produced IFN-κ is identified to be a key to trigger type I interferon responses in CLE. Other immune cells such as plasmacytoid dendritic cells (pDCs) are identified to be relevant origin of type I interferons (type I IFNs) which are central to the development of CLE lesions and responsible for mediating Th1 cell activity. Other types of cells such as neutrophils, B cells and Th17 cells also are involved in the development of this disease. The close interaction of those cells composes a comprehensive and complicated network in CLE. In this review, we discussed the aberrant distribution and function of different cells types involved in this disease and will offer a new direction for research and therapy in the near future.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jinli Yan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lan Fan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
26
|
Gautam P, Kaur G, Tandon A, Sharma A, Bhatnagar A. Altered redox regulation by Nrf2-Keap1 system in dendritic cells of systemic lupus erythematosus patients. Lupus 2020; 29:1544-1555. [PMID: 32811277 DOI: 10.1177/0961203320950022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder associated with inflammation and multiple organ involvement. Individually, dendritic cells (DCs) and oxidative stress have been well discussed for their critical involvement in the pathogenesis of disease but the precise impact of oxidative stress on DCs in relation to SLE disease activity is yet to be scrutinized. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway is the cellular mechanism to combat increased reactive oxygen species (ROS). The current study was framed in order to understand redox regulation in DCs along with an argument in context to disease activity. Here, 23 SLE patients along with 10 healthy controls were enrolled and disease activity was calculated as the recent change in SLEDAI score. We found the percentage of circulating plasmacytoid DCs (pDCs) was increased with an increase in disease activity. Altered DCs functionality along with disease activity was further supported with the differential concentration of Type I IFNs. The disease activity was positively associated with increased levels of ROS. A relevant reason for increased ROS was further explained with the decreased levels of transcription factor Nrf2. Hence, the present study suggests that SLE specific DCs displayed elevation in ROS and this outcome might be due to impaired free radical clearance by Nrf2. Correlation studies further established an association of disease activity with increased ROS, Type I IFNs levels and decreased activity of oxidative stress regulating enzymes.
Collapse
Affiliation(s)
- Preeti Gautam
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Gurjasmine Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Ankit Tandon
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
27
|
Hiepe F. Neue Erkenntnisse zur Pathogenese des SLE und ihre Auswirkungen auf
die Entwicklung neuer Therapie-Konzepte. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1210-2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungAutoantikörper sind essentiell in der Pathogenese des SLE. Sie sind das
Ergebnis einer Störung des erworbenen (adaptiven) Immunsystems mit
fehlender Toleranz gegen Selbst. Eine Typ-I Interferon-Signatur, die im
angeborenen (innaten) Immunsystem ihren Ursprung hat, ist ein wesentlicher
Treiber dieser Störung. Autoantikörper können sowohl von
kurzlebigen, proliferierenden Plasmablasten, die B-Zell-Hyperaktivität
widerspiegeln, als auch von langlebigen, nicht-proliferierenden
Gedächtnis-Plasmazellen sezerniert werden.
Gedächtnis-Plasmazellen, die in Nischen im Knochenmark und im
entzündeten Gewebe lokalisiert sind, lassen sich nicht durch
konventionelle Immunsuppressiva und Therapien mit B-Zellen als Target
eliminieren. Konzepte, die auf die Depletion von Gedächtnis-Plasmazellen
abzielen, können im Zusammenspiel mit Targets, die eine Aktivierung von
autoreaktiven B-Zellen verhindern, ein kuratives Potenzial haben.
Collapse
Affiliation(s)
- Falk Hiepe
- Medizinische Klinik mit Schwerpunkt Rheumatologie und klin.
Immunologie, Charité – Universitätsmedizin Berlin;
Deutsches Rheumaforschungszentrum – ein Institut der
Leibniz-Gemeinschaft, Berlin
| |
Collapse
|
28
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
29
|
Shi H, Gudjonsson JE, Kahlenberg JM. Treatment of cutaneous lupus erythematosus: current approaches and future strategies. Curr Opin Rheumatol 2020; 32:208-214. [PMID: 32141953 PMCID: PMC7357847 DOI: 10.1097/bor.0000000000000704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cutaneous lupus erythematosus (CLE) is a highly heterogeneous autoimmune disease. No specific Federal Drug Administration-approved therapies for CLE-alone are available, and resistance to conventional treatments is common. This review will summarize current treatment approaches and pending treatment strategies. RECENT FINDINGS Research into the pathogenesis of CLE is accelerating. A skewed type I interferon production and response contribute to CLE lesions. The pathophysiology of lesions may be similar among the lesional subtypes, and patients with a more TLR9-driven disease mechanism may have more benefit from hydroxychloroquine. Case reports continue to support the use of dapsone for CLE, especially bullous lupus erythematosus. Rituximab and Belimumab have efficacy in patients with systemic lupus erythematosus and severe active CLE. The significant role for type I interferons in CLE and encouraging clinical data suggest anifrolumab as a very promising agent for CLE. Dapirolizumab, BIIB059, Ustekinumab and Janus kinase inhibitors also have supportive early data as promising new strategies for CLE treatment. SUMMARY Continued research to understand the mechanisms driving CLE will facilitate the development and approval of new targets. The pipeline for new treatments is rich.
Collapse
Affiliation(s)
- Hong Shi
- Department of Internal Medicine, Division of Rheumatology, University of Michigan
| | | | | |
Collapse
|
30
|
Ritprajak P, Kaewraemruaen C, Hirankarn N. Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells 2019; 8:cells8101291. [PMID: 31640263 PMCID: PMC6830089 DOI: 10.3390/cells8101291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chamraj Kaewraemruaen
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
31
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|