1
|
Zhu H, Wei L, Liu X, Liu S, Chen H, Chen P, Li X, Qian P. Pathogenicity Studies of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus LNSY-GY and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus GXGG-8011 in Piglets. Viruses 2023; 15:2247. [PMID: 38005924 PMCID: PMC10674415 DOI: 10.3390/v15112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses to the swine industry. The U.S., China, and Peru have reported NADC30-like or NADC34-like PRRSV-infected piglets, which have been identified as the cause of a significant number of abortions in clinics. Although the pathogenicity of NADC30-like PRRSV and NADC34-like PRRSV in piglets exhibits significant variability globally, studies on their pathogenicity in China are limited. In this study, the animal experiments showed that within 8-14 days post-infection, both piglets infected with NADC30-like PRRSV GXGG-8011 and those infected with NADC34-like PRRSV LNSY-GY exhibited significant weight loss compared to the control piglets. Additionally, the viremia of the LNSY-GY persisted for 28 days, while the viremia of piglets infected with the GXGG-8011 lasted for 17 days. Similarly, the duration of viral shedding through the fecal-oral route after the LNSY-GY infection was longer than that observed after the GXGG-8011 infection. Furthermore, post-infection, both the LNSY-GY and GXGG-8011 led to pronounced histopathological lesions in the lungs of piglets, including interstitial pneumonia and notable viral colonization. However, the antibody production in the LNSY-GY-infected group occurred earlier than that in the GXGG-8011-infected group. Our research findings indicate that LNSY-GY is a mildly pathogenic strain in piglets, whereas we speculate that the GXGG-8011 might be a highly pathogenic strain.
Collapse
Affiliation(s)
- Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liuqing Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shudan Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
2
|
Álvarez B, Revilla C, Poderoso T, Ezquerra A, Domínguez J. Porcine Macrophage Markers and Populations: An Update. Cells 2023; 12:2103. [PMID: 37626913 PMCID: PMC10453229 DOI: 10.3390/cells12162103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Besides its importance as a livestock species, pig is increasingly being used as an animal model for biomedical research. Macrophages play critical roles in immunity to pathogens, tissue development, homeostasis and tissue repair. These cells are also primary targets for replication of viruses such as African swine fever virus, classical swine fever virus, and porcine respiratory and reproductive syndrome virus, which can cause huge economic losses to the pig industry. In this article, we review the current status of knowledge on porcine macrophages, starting by reviewing the markers available for their phenotypical characterization and following with the characteristics of the main macrophage populations described in different organs, as well as the effect of polarization conditions on their phenotype and function. We will also review available cell lines suitable for studies on the biology of porcine macrophages and their interaction with pathogens.
Collapse
Affiliation(s)
| | | | | | - Angel Ezquerra
- Departamento de Biotecnología, CSIC INIA, Ctra. De La Coruña, km7.5, 28040 Madrid, Spain; (B.Á.); (C.R.); (T.P.); (J.D.)
| | | |
Collapse
|
3
|
Helixor-M Suppresses Immunostimulatory Activity through TLR4-Dependent NF-κB Pathway in RAW 264.7 Cells. Life (Basel) 2023; 13:life13020595. [PMID: 36836952 PMCID: PMC9966133 DOI: 10.3390/life13020595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Inflammation causes a protective immune response, which can be observed by examining the inflammatory responses of macrophages. Macrophages release various immunostimulatory factors when destroying external pathogens. We induced lipopolysaccharides (LPS) in RAW 264.7 cells, a macrophage cell line, to determine whether Helixor-M can cause immuno-suppression. Helixor-M is known to have anticancer and immune effects. However, an indicator that regulates immunity has not been clearly confirmed. To this end, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted to confirm Helixor-M was not cytotoxic. Western blotting and real-time polymerase chain reaction (RT-PCR) confirmed the anti-inflammatory effects. Additionally, immunofluorescence assay confirmed the translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, a representative inflammatory pathway. Helixor-M was found to be non-cytotoxic, induce the NF-κB pathway, and reduce the levels of pro-inflammatory cytokine and mitogen-activated protein kinase (MAPK). We found Helixor-M affected the PI3K/AKT/JNK pathway. Therefore, we confirmed Helixor-M acts as an anti-inflammatory agent through NF-κB, TLR4 and PI3K inhibition and that it could be an effective immunosuppressive drug.
Collapse
|
4
|
Abbas M, Hayirli Z, Drakesmith H, Andrews SC, Lewis MC. Effects of iron deficiency and iron supplementation at the host-microbiota interface: Could a piglet model unravel complexities of the underlying mechanisms? Front Nutr 2022; 9:927754. [PMID: 36267902 PMCID: PMC9577221 DOI: 10.3389/fnut.2022.927754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023] Open
Abstract
Iron deficiency is the most prevalent human micronutrient deficiency, disrupting the physiological development of millions of infants and children. Oral iron supplementation is used to address iron-deficiency anemia and reduce associated stunting but can promote infection risk since restriction of iron availability serves as an innate immune mechanism against invading pathogens. Raised iron availability is associated with an increase in enteric pathogens, especially Enterobacteriaceae species, accompanied by reductions in beneficial bacteria such as Bifidobacteria and lactobacilli and may skew the pattern of gut microbiota development. Since the gut microbiota is the primary driver of immune development, deviations from normal patterns of bacterial succession in early life can have long-term implications for immune functionality. There is a paucity of knowledge regarding how both iron deficiency and luminal iron availability affect gut microbiota development, or the subsequent impact on immunity, which are likely to be contributors to the increased risk of infection. Piglets are naturally iron deficient. This is largely due to their low iron endowments at birth (primarily due to large litter sizes), and their rapid growth combined with the low iron levels in sow milk. Thus, piglets consistently become iron deficient within days of birth which rapidly progresses to anemia in the absence of iron supplementation. Moreover, like humans, pigs are omnivorous and share many characteristics of human gut physiology, microbiota and immunity. In addition, their precocial nature permits early maternal separation, individual housing, and tight control of nutritional intake. Here, we highlight the advantages of piglets as valuable and highly relevant models for human infants in promoting understanding of how early iron status impacts physiological development. We also indicate how piglets offer potential to unravel the complexities of microbiota-immune responses during iron deficiency and in response to iron supplementation, and the link between these and increased risk of infectious disease.
Collapse
Affiliation(s)
- Munawar Abbas
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Zeynep Hayirli
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon C. Andrews
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Marie C. Lewis
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
5
|
Dubreil L, Ledevin M, Hervet C, Menard D, Philippe C, Michel FJ, Larcher T, Meurens F, Bertho N. The Internal Conduit System of the Swine Inverted Lymph Node. Front Immunol 2022; 13:869384. [PMID: 35734172 PMCID: PMC9207403 DOI: 10.3389/fimmu.2022.869384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Lymph nodes (LN) are the crossroad where naïve lymphocytes, peripheral antigens and antigen presenting cells contact together in order to mount an adaptive immune response. For this purpose, LN are highly organized convergent hubs of blood and lymphatic vessels that, in the case of B lymphocytes, lead to the B cell follicles. Herein take place the selection and maturation of B cell clones producing high affinity antibodies directed against various antigens. Whereas the knowledge on the murine and human LN distribution systems have reached an exquisite precision those last years, the organization of the antigens and cells circulation into the inverted porcine LN remains poorly described. Using up to date microscopy tools, we described the complex interconnections between afferent lymphatics and blood vessels, perifollicular macrophages, follicular B cells and efferent blood vessels. We observed that afferent lymphatic sinuses presented an asymmetric Lyve-1 expression similar to the one observed in murine LN, whereas specialized perifollicular sinuses connect the main afferent lymphatic sinus to the B cell follicles. Finally, whereas it was long though that mature B cells egress from the inverted LN in the T cell zone through HEV, our observations are in agreement with mature B cells accessing the efferent blood circulation in the efferent, subcapsular area. This understanding of the inverted porcine LN circuitry will allow a more accurate exploration of swine pathogens interactions with the immune cells inside the LN structures. Moreover, the mix between similarities and differences of porcine inverted LN circuitry with mouse and human normal LN shall enable to better apprehend the functions and malfunctions of normal LN from a new perspective.
Collapse
Affiliation(s)
| | | | | | | | - Claire Philippe
- APEX, PAnTher, INRAE, Oniris, Nantes, France
- BIOEPAR, INRAE, Oniris, Nantes, France
| | | | | | - François Meurens
- BIOEPAR, INRAE, Oniris, Nantes, France
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nicolas Bertho
- BIOEPAR, INRAE, Oniris, Nantes, France
- *Correspondence: Nicolas Bertho,
| |
Collapse
|
6
|
Villanueva-Hernández S, Adib Razavi M, van Dongen KA, Stadler M, de Luca K, Beyersdorf N, Saalmüller A, Gerner W, Mair KH. Co-Expression of the B-Cell Key Transcription Factors Blimp-1 and IRF4 Identifies Plasma Cells in the Pig. Front Immunol 2022; 13:854257. [PMID: 35464468 PMCID: PMC9024106 DOI: 10.3389/fimmu.2022.854257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Antibody-secreting plasma cells (PCs) have remained largely uncharacterized for years in the field of porcine immunology. For an in-depth study of porcine PCs, we identified cross-reactive antibodies against three key transcription factors: PR domain zinc finger protein-1 (Blimp-1), interferon regulatory factor 4 (IRF4), and paired box 5 (Pax5). A distinct Blimp-1+IRF4+ cell population was found in cells isolated from blood, spleen, lymph nodes, bone marrow, and lung of healthy pigs. These cells showed a downregulation of Pax5 compared to other B cells. Within Blimp-1+IRF4+ B cells, IgM-, IgG-, and IgA-expressing cells were identified and immunoglobulin-class distribution was clearly different between the anatomical locations, with IgA+ PCs dominating in lung tissue and IgM+ PCs dominating in the spleen. Expression patterns of Ki-67, MHC-II, CD9, and CD28 were investigated in the different organs. A high expression of Ki-67 was observed in blood, suggesting a plasmablast stage. Blimp-1+IRF4+ cells showed an overall lower expression of MHC-II compared to regular B cells, confirming a progressive loss in B-cell differentiation toward the PC stage. CD28 showed slightly elevated expression levels in Blimp-1+IRF4+ cells in most organs, a phenotype that is also described for PCs in mice and humans. This was not seen for CD9. We further developed a FACS-sorting strategy for live porcine PCs for functional assays. CD3-CD16-CD172a– sorted cells with a CD49dhighFSC-Ahigh phenotype contained Blimp-1+IRF4+ cells and were capable of spontaneous IgG production, thus confirming PC identity. These results reveal fundamental phenotypes of porcine PCs and will facilitate the study of this specific B-cell subset in the future.
Collapse
Affiliation(s)
- Sonia Villanueva-Hernández
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katinka A. van Dongen
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H. Mair
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Kerstin H. Mair,
| |
Collapse
|
7
|
Ma X, Wang P, Zhang R, Zhao Y, Wu Y, Luo C, Zeshan B, Yang Z, Qiu L, Zhou Y, Wang X. A NADC30-like PRRSV Causes Serious Intestinal Infections and Tropism in Piglets. Vet Microbiol 2022; 268:109397. [DOI: 10.1016/j.vetmic.2022.109397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 01/04/2023]
|
8
|
Sakurai Y, Suzuoki M, Gomi M, Tanaka H, Akita H. Optimization of Sentinel Lymph Node Imaging Methodology Using Anionic Liposome and Hyaluronidase. Pharmaceutics 2021; 13:pharmaceutics13091462. [PMID: 34575540 PMCID: PMC8465215 DOI: 10.3390/pharmaceutics13091462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
The sentinel lymph node (SLN) is the first lymph node into which lymphatic fluid from tumor tissues flows. The development of a highly sensitive probe for detecting SLNs is desired for the lymph node dissection through intraoperative biopsy. We have previously shown that anionic liposomes tend to accumulate in lymph nodes and that macrophage uptake of liposomes contributes to their accumulation. In the present study, we found that among anionic lipids, phosphatidylserine (PS)-containing liposomes were substantially taken up by macrophages. We identified a new lipid composition to improve the SNL-selectivity of liposome accumulation based on Design-of-Experiment. The optimized PS-containing particles were more selectively accumulate to SLN lymph nodes than existing imaging agents indocyanine green. These results indicate the effectiveness of PS-containing anionic particles in SLN imaging.
Collapse
Affiliation(s)
- Yu Sakurai
- Correspondence: (Y.S.); (H.A.); Tel.: +81-43-226-2893 (H.A.)
| | | | | | | | - Hidetaka Akita
- Correspondence: (Y.S.); (H.A.); Tel.: +81-43-226-2893 (H.A.)
| |
Collapse
|
9
|
Herrera-Uribe J, Wiarda JE, Sivasankaran SK, Daharsh L, Liu H, Byrne KA, Smith TPL, Lunney JK, Loving CL, Tuggle CK. Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing. Front Genet 2021; 12:689406. [PMID: 34249103 PMCID: PMC8261551 DOI: 10.3389/fgene.2021.689406] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting, representing Myeloid, NK cells and specific populations of T and B-cells. Transcriptomes for each bulk population of cells were generated by RNA-seq with 10,974 expressed genes detected. Pairwise comparisons between cell types revealed specific expression, while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes (SEG) showed high enrichment of biological processes related to the nature of each cell type. Comparison of gene expression indicated highly significant correlations between pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia. Second, higher resolution of distinct cell populations was obtained by single-cell RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and sequenced that produced 28,810 single cell transcriptomes distributed across 36 clusters and classified into 13 general cell types including plasmacytoid dendritic cells (DC), conventional DCs, monocytes, B-cell, conventional CD4 and CD8 αβ T-cells, NK cells, and γδ T-cells. Signature gene sets from the human Haemopedia data were assessed for relative enrichment in genes expressed in pig cells and integration of pig scRNA-seq with a public human scRNA-seq dataset provided further validation for similarity between human and pig data. The sorted porcine bulk RNAseq dataset informed classification of scRNA-seq PBMC populations; specifically, an integration of the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-positive T-cell populations in the scRNA-seq data. Overall, the data provides deep and well-validated transcriptomic data from sorted PBMC populations and the first single-cell transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of pig genes controlling immunogenetic traits as part of the porcine Functional Annotation of Animal Genomes (FAANG) project, as well as further study of, and development of new reagents for, porcine immunology.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jayne E. Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
- Immunobiology Graduate Program, Iowa State University, Ames, IA, United States
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
| | - Sathesh K. Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
- Genome Informatics Facility, Iowa State University, Ames, IA, United States
| | - Lance Daharsh
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | | - Joan K. Lunney
- USDA-ARS, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | |
Collapse
|
10
|
Bertho N, Meurens F. The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol Immunol 2021; 135:254-267. [PMID: 33933817 DOI: 10.1016/j.molimm.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
By definition no model is perfect, and this also holds for biology and health sciences. In medicine, murine models are, and will be indispensable for long, thanks to their reasonable cost and huge choice of transgenic strains and molecular tools. On the other side, non-human primates remain the best animal models although their use is limited because of financial and obvious ethical reasons. In the field of respiratory diseases, specific clinical models such as sheep and cotton rat for bronchiolitis, or ferret and Syrian hamster for influenza and Covid-19, have been successfully developed, however, in these species, the toolbox for biological analysis remains scarce. In this view the porcine medical model is appearing as the third, intermediate, choice, between murine and primate. Herein we would like to present the pros and cons of pig as a model for acquired respiratory conditions, through an immunological point of view. Indeed, important progresses have been made in pig immunology during the last decade that allowed the precise description of immune molecules and cell phenotypes and functions. These progresses might allow the use of pig as clinical model of human respiratory diseases but also as a species of interest to perform basic research explorations.
Collapse
Affiliation(s)
| | - François Meurens
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada
| |
Collapse
|
11
|
Eo HJ, Park GH, Jeong JB. In vitro macrophage activation by Sageretia thea fruits through TLR2/TLR4-dependent activation of MAPK, NF-κB and PI3K/AKT signalling in RAW264.7 cells. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2020.1857339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Gwang Hun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, Republic of Korea
| |
Collapse
|
12
|
Son HJ, Eo HJ, Park GH, Jeong JB. Heracleum moellendorffii root extracts exert immunostimulatory activity through TLR2/4-dependent MAPK activation in mouse macrophages, RAW264.7 cells. Food Sci Nutr 2021; 9:514-521. [PMID: 33473312 PMCID: PMC7802540 DOI: 10.1002/fsn3.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Heracleum moellendorffii (H. moellendorffii) is a family of Umbelliferae and has long been used for food and medicinal purposes. However, the immune-enhancing activity of H. moellendorffii has not been studied. Thus, we evaluated in vitro immune-enhancing activity of H. moellendorffii through macrophage activation using RAW264.7 cells. Heracleum moellendorffii Root extracts (HMR) increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6 IL-12, TNF-α, and MCP-1 and activated phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by HMR. Inhibition of MAPK signaling attenuated the production of immunomodulators induced by HMR, but inhibitions of NF-κB or PI3K/AKT signaling did not affect HMR-mediated production of immunomodulators. HMR activated MAPK signaling pathway, and activation of MAPK signaling pathways by HMR was reversed by TLR2 and TLR4 inhibition. Based on the results of this study, HMR is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK signaling pathway. Therefore, it is thought that HMR has the potential to be used as an agent for enhancing immunity.
Collapse
Affiliation(s)
- Ho Jun Son
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Hyun Ji Eo
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Gwang Hun Park
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Jin Boo Jeong
- Department of Medicinal Plant ResourcesAndong National UniversityAndongKorea
| |
Collapse
|
13
|
Crisci E, Moroldo M, Vu Manh TP, Mohammad A, Jourdren L, Urien C, Bouguyon E, Bordet E, Bevilacqua C, Bourge M, Pezant J, Pléau A, Boulesteix O, Schwartz I, Bertho N, Giuffra E. Distinctive Cellular and Metabolic Reprogramming in Porcine Lung Mononuclear Phagocytes Infected With Type 1 PRRSV Strains. Front Immunol 2020; 11:588411. [PMID: 33365028 PMCID: PMC7750501 DOI: 10.3389/fimmu.2020.588411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has an extensive impact on pig production. The causative virus (PRRSV) is divided into two species, PRRSV-1 (European origin) and PRRSV-2 (North American origin). Within PRRSV-1, PRRSV-1.3 strains, such as Lena, are more pathogenic than PRRSV-1.1 strains, such as Flanders 13 (FL13). To date, the molecular interactions of PRRSV with primary lung mononuclear phagocyte (MNP) subtypes, including conventional dendritic cells types 1 (cDC1) and 2 (cDC2), monocyte-derived DCs (moDC), and pulmonary intravascular macrophages (PIM), have not been thoroughly investigated. Here, we analyze the transcriptome profiles of in vivo FL13-infected parenchymal MNP subpopulations and of in vitro FL13- and Lena-infected parenchymal MNP. The cell-specific expression profiles of in vivo sorted cells correlated with their murine counterparts (AM, cDC1, cDC2, moDC) with the exception of PIM. Both in vivo and in vitro, FL13 infection altered the expression of a low number of host genes, and in vitro infection with Lena confirmed the higher ability of this strain to modulate host response. Machine learning (ML) and gene set enrichment analysis (GSEA) unraveled additional relevant genes and pathways modulated by FL13 infection that were not identified by conventional analyses. GSEA increased the cellular pathways enriched in the FL13 data set, but ML allowed a more complete comprehension of functional profiles during FL13 in vitro infection. Data indicates that cellular reprogramming differs upon Lena and FL13 infection and that the latter might keep antiviral and inflammatory macrophage/DC functions silent. Although the slow replication kinetics of FL13 likely contribute to differences in cellular gene expression, the data suggest distinct mechanisms of interaction of the two viruses with the innate immune system during early infection.
Collapse
Affiliation(s)
- Elisa Crisci
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Ammara Mohammad
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Celine Urien
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elise Bordet
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jérémy Pezant
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Alexis Pléau
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Olivier Boulesteix
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Isabelle Schwartz
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
14
|
Um Y, Eo HJ, Kim HJ, Kim K, Jeon KS, Jeong JB. Wild simulated ginseng activates mouse macrophage, RAW264.7 cells through TRL2/4-dependent activation of MAPK, NF-κB and PI3K/AKT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113218. [PMID: 32755650 DOI: 10.1016/j.jep.2020.113218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng Meyer) is a very well-known traditional herbal medicine that has long been used to enhance the body's immunity. Because it is a type of ginseng, it is believed that wild simulated ginseng (WSG) also has immune-enhancing activity. However, study on the immune-enhancing activity of WSG is quite insufficient compared to ginseng. AIM OF THE STUDY In this study, we evaluated immune-enhancing activity of WSG through macrophage activation to provide a scientific basis for the immune enhancing activity of WSG. MATERIALS AND METHODS The effect of WSG on viability of RAW264.7 cells was evaluated by MTT assay. The NO level was measured by Griess reagent. The expression levels of mRNA or protein in WSG-treated RAW264.7 cells were analyzed by RT-PCR and Western blot, respectively. RESULTS WSG increased the production of immunomodulators such as NO, iNOS, COX-2, IL-1β, IL-6 and TNF-α and activated phagocytosis in mouse macrophages RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by WSG. WSG activated MAPK, NF-κB and PI3K/AKT signaling pathways, and inhibition of such signaling activation blocked WSG-mediated production of immunomodulators. In addition, activation of MAPK, NF-κB and PI3K/AKT signaling pathways by WSG was reversed by TLR2 or TLR4 inhibition. CONCLUSION Based on the results of this study, WSG is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, it is thought that WSG have the potential to be used as an agent for enhancing immunity.
Collapse
Affiliation(s)
- Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Hyun Jun Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Kiyoon Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Kwon Seok Jeon
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, 36040, Republic of Korea.
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
15
|
You X, Qu Y, Zhang Y, Huang J, Gao X, Huang C, Luo G, Liu Q, Liu M, Xu D. Mir-331-3p Inhibits PRRSV-2 Replication and Lung Injury by Targeting PRRSV-2 ORF1b and Porcine TNF-α. Front Immunol 2020; 11:547144. [PMID: 33072088 PMCID: PMC7544944 DOI: 10.3389/fimmu.2020.547144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by a single-stranded RNA virus (PRRSV) is a highly infectious respiratory disease and leads to huge economic losses to the swine industry worldwide. To investigate the role of miRNAs in the infection and lung injury induced by PRRSV, the differentially expressed miRNAs (DE-miRs) were isolated from PRRSV-2 infected/mock-infected PAMs of Meishan, Landrace, Pietrain, and Qingping pigs at 9, 36, and 60 hpi. Mir-331-3p was the only common DE-miR in each set of miRNA expression profile at 36 hpi. Mir-210 was one of 7 common DE-miRs between PRRSV infected and mock-infected PAMs of Meishan, Pietrain, and Qingping pigs at 60 hpi. Mir-331-3p/mir-210 could target PRRSV-2 ORF1b, bind and downregulate porcine TNF-α/STAT1 expression, and inhibit PRRSV-2 replication, respectively. Furthermore, STAT1 and TNF-α could mediate the transcriptional activation of MCP-1, VCAM-1, and ICAM-1. STAT1 could also upregulate the expression of TNF-α by binding to its promoter region. In vivo, pEGFP-N1-mir-331-3p could significantly reduce viral replication and pathological changes in PRRSV-2 infected piglets. Taken together, Mir-331-3p/mir-210 have significant roles in the infection and lung injury caused by PRRSV-2, and they may be promising therapeutic targets for PRRS and lung injury/inflammation.
Collapse
Affiliation(s)
- Xiangbin You
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yilin Qu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yue Zhang
- Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingshu Huang
- Agricultural Development Center of Hubei Province, Wuhan, China
| | - Xiaoxiao Gao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengyu Huang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Luo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Magiri RB, Lai KJ, Mutwiri GK, Wilson HL. Experimental PCEP-Adjuvanted Swine Influenza H1N1 Vaccine Induced Strong Immune Responses but Did Not Protect Piglets against Heterologous H3N2 Virus Challenge. Vaccines (Basel) 2020; 8:E235. [PMID: 32443540 PMCID: PMC7349969 DOI: 10.3390/vaccines8020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
Vaccination is the most efficient method of protection against influenza infections. However, the rapidly mutating viruses and development of new strains make it necessary to develop new influenza vaccines annually. Hence, vaccines that stimulate cross-protection against multiple influenza subtypes are highly sought. Recent evidence suggests that adjuvants such as PCEP that promote Th1-type T cell and Th2-type T cell immune responses and broad-spectrum immune responses may confer cross-protection against heterologous influenza strains. In this study, we evaluated whether the immunogenic and protective potential of PCEP-adjuvanted inactivated swine influenza virus H1N1 vaccine can protect pigs immunized against live H3N2 virus. Piglets were vaccinated via the intradermal route with PCEP-adjuvanted inactivated swine influenza virus (SIV) H1N1 vaccine, boosted at day 21 with the same vaccines then challenged with infectious SIV H3N2 virus at day 35 via the tracheobronchial route. The pigs showed significant anti-H1N1 SIV specific antibody titres and H1N1 SIV neutralizing antibody titres, and these serum titres remained after the challenge with the H3N2 virus. In contrast, vaccination with anti-H1N1 SIV did not trigger anti-H3N2 SIV antibody titres or neutralizing antibody titres and these titres remained low until pigs were challenged with H3N2 SIV. At necropsy (six days after challenge), we collected prescapular lymph nodes and tracheobronchial draining the vaccination sites and challenge site, respectively. ELISPOTs from lymph node cells restimulated ex vivo with inactivated SIV H1N1 showed significant production of IFN-γ in the tracheobronchial cells, but not the prescapular lymph nodes. In contrast, lymph node cells restimulated ex vivo with inactivated SIV H1N1 showed significantly higher IL-13 and IL-17A in the prescapular lymph nodes draining the vaccination sites relative to unchallenged animals. Lung lesion scores show that intradermal vaccination with H1N1 SIV plus PCEP did not prevent lesions when the animals were challenged with H3N2. These results confirm previous findings that PCEP is effective as a vaccine adjuvant in that it induces strong immune responses and protects against homologous swine influenza H1N1 virus, but the experimental H1N1 vaccine failed to cross-protect against heterologous H3N2 virus.
Collapse
Affiliation(s)
- Royford Bundi Magiri
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (R.B.M.); (K.J.L.); (G.K.M.)
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
- College of Agriculture, Fisheries and Forestry, Fiji National University, Suva 7222, Fiji
| | - Ken John Lai
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (R.B.M.); (K.J.L.); (G.K.M.)
| | - George Kiremu Mutwiri
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (R.B.M.); (K.J.L.); (G.K.M.)
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Heather Lynne Wilson
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (R.B.M.); (K.J.L.); (G.K.M.)
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
17
|
Rahe MC, Dvorak CMT, Wiseman B, Martin D, Murtaugh MP. Establishment and characterization of a porcine B cell lymphoma cell line. Exp Cell Res 2020; 390:111986. [PMID: 32240660 DOI: 10.1016/j.yexcr.2020.111986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/08/2023]
Abstract
The lack of available, well characterized, established, domestic porcine cell lines hinders the advancement of porcine cellular immunology. A case of multicentric lymphoma was diagnosed in a market weight pig at the time of slaughter. Affected lymph nodes and spleen were collected and used for single cell isolation and analysis. Cell lines were established by 3 rounds of limiting dilution from splenic and subiliac lymph node lymphomas. Surface marker staining identified the cells as CD21+, CD79a+, CD20+, PAX5+, and CD3- and cells were grown and easily passaged in cell culture. Transcriptome analysis was carried out to further characterize these rapidly proliferating cells validating the initial cytometric findings, confirming their identity as B cell lymphomas, and suggesting that they arose from germinal center centroblasts with aberrant control of BCL6 expression. Functional analysis identified the cells as being involved in cancer, cell movement, cell survival, and apoptosis. These new porcine B cell lymphoma cell lines will be a valuable resource for more in-depth cellular investigations into the porcine immune system and cancer, as well as providing a potential tool for the growth of lymphotropic viruses of pigs and humans.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St Paul, MN, 55108, USA
| | - Cheryl M T Dvorak
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St Paul, MN, 55108, USA.
| | - Barry Wiseman
- Triumph Foods, LLC, 5302 Stockyards Expressway, Saint Joseph, MO, 64504, USA
| | - Daniel Martin
- Angels Veterinary Express, 11519 State Hwy C, Savannah, MO, 64485, USA
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St Paul, MN, 55108, USA
| |
Collapse
|