1
|
Zhu Y, Fan K, Zhao X, Hou K. The Association Between Serum Pentraxin-3 Level at Admission and the Functional Outcome of Patients After Acute Ischemic Stroke: A Meta-Analysis. Balkan Med J 2025; 42:201-211. [PMID: 40326822 PMCID: PMC12060599 DOI: 10.4274/balkanmedj.galenos.2025.2025-1-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
Background Acute ischemic stroke (AIS) remains a leading cause of disability worldwide, placing a significant burden on patients' quality of life and healthcare systems. Pentraxin-3 (PTX-3), an inflammatory biomarker, may be associated with AIS prognosis; however, existing evidence is inconclusive. Aims To examine whether serum PTX-3 levels at admission are linked to the likelihood of poor functional outcomes in AIS patients. Study Design Systematic review and meta-analysis. Methods A comprehensive search of PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases was conducted to identify studies evaluating PTX-3 levels in AIS patients. Eligible studies included those that measured PTX-3 within 48 h of admission and evaluated outcomes using the modified Rankin Scale, with scores > 2 defined as poor outcomes. A random-effects model was used to calculate pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Results Ten cohort studies involving1202 AIS patients were included. Higher PTX-3 levels at admission were significantly associated with an increased risk of poor functional outcomes (OR, 2.06; 95% CI, 1.72-2.47; p < 0.001), with no significant heterogeneity (I² = 0%). Meta-regression showed that using higher PTX-3 cutoff values reported stronger associations (p < 0.05). Subgroup analyses confirmed consistent associations across study designs, patient characteristics, and timing of outcome assessment. The association was more pronounced in studies using a PTX-3 cutoff ≥ 3.3 ng/mL compared to those with a cutoff < 3.3 ng/mL. Conclusion Elevated serum PTX-3 levels at admission may serve as a prognostic biomarker for poor functional outcomes in AIS. Differences in PTX-3 cutoff values and potential residual confounding should also be considered. Further multicenter studies involving diverse populations are necessary to confirm these results and establish PTX-3 as a reliable prognostic indicator in clinical practice.
Collapse
Affiliation(s)
- Yanrong Zhu
- Clinic of Physical Examination Center of the Outpatient General Hospital of the Western Theater Command of the People’s Liberation Army of China, Chengdu, China
| | - Kui Fan
- Clinic of Physical Examination Center of the Outpatient General Hospital of the Western Theater Command of the People’s Liberation Army of China, Chengdu, China
| | - Xujuan Zhao
- Clinic of Physical Examination Center of the Outpatient General Hospital of the Western Theater Command of the People’s Liberation Army of China, Chengdu, China
| | - Kaiwen Hou
- Clinic of Physical Examination Center of the Outpatient General Hospital of the Western Theater Command of the People’s Liberation Army of China, Chengdu, China
| |
Collapse
|
2
|
Cao Z, Chen Z, Yang J, Shen X, Chen C, Zhu X, Fang Q. Prediction Value of High Serum Pentraxin-3 for Short-Term Recurrence of Cerebral Infarction in Patients Accompanied with Intracranial Atherosclerotic Stenosis Within One Year. Int J Gen Med 2024; 17:6029-6035. [PMID: 39678683 PMCID: PMC11646456 DOI: 10.2147/ijgm.s491039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Objective Elevated serum pentraxin-3 levels are generally considered a risk factor for atherosclerosis. However, there is limited data on the relationship between pentraxin-3 and cerebral infarction (CI) accompanied by intracranial atherosclerotic stenosis (ICAS). This study aims to investigate the association between pentraxin-3 (PTX-3) and short-term recurrence in cerebral infarction caused by ICAS patients within one year. Methods A prospective observational study was conducted. Cerebral infarction accompanied by intracranial atherosclerotic stenosis (CI-ICAS) patients were selected from January 2020 to December 2023. Recurrent ischemic stroke (RIS) is defined as a new neurological deficit that appears after a period of clinical stabilization, lasting more than 24 hours, with an attributable new ischemic lesion that can be confirmed by CT or MRI. Serum pentraxin-3 levels were determined on admission. Multivariate logistic regression analysis was used to investigate the relationship between serum pentraxin-3 and RIS. Results Among 398 patients enrolled, 112 cases (28.1%) had recurrence within one year. The elevation of serum PTX-3 level in patients accompanied with ICAS was independently correlated with recurrent stroke. Therefore, it is worth considering the possibility of intervening in higher PTX-3 levels. Serum pentraxin-3 was significantly higher in patients with RIS (15.16 vs 10.21 µmol/L, P<0.001). Correlation analysis showed that PTX-3 was correlated with age, LDL, Hs-CRP, Baseline NIHSS score, and Hcy (P < 0.001). Univariate logistic regression analysis showed that pentraxin-3 remained an independent predictor of recurrent ischemic stroke after adjusting for major confounding factors (OR = 1.21, 95% CI: 1.06-1.39, P = 0.007). Conclusion The elevation of serum pentraxin-3 level in patients with ischemic stroke was independently correlated with the recurrence of stroke within one year. Therefore, intervention in serum pentraxin-3 levels may be worth considering.
Collapse
Affiliation(s)
- Zhiyong Cao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Zhenhua Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Jiawei Yang
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Xiaozhu Shen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Xiangyang Zhu
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
3
|
McCallion S, McLarnon T, Cooper E, English AR, Watterson S, Chemaly ME, McGeough C, Eakin A, Ahmed T, Gardiner P, Pendleton A, Wright G, McGuigan D, O’Kane M, Peace A, Kuan Y, Gibson DS, McClean PL, Kelly C, McGilligan V, Murray EK, McCarroll F, Bjourson AJ, Rai TS. Senescence Biomarkers CKAP4 and PTX3 Stratify Severe Kidney Disease Patients. Cells 2024; 13:1613. [PMID: 39404377 PMCID: PMC11475272 DOI: 10.3390/cells13191613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Cellular senescence is the irreversible growth arrest subsequent to oncogenic mutations, DNA damage, or metabolic insult. Senescence is associated with ageing and chronic age associated diseases such as cardiovascular disease and diabetes. The involvement of cellular senescence in acute kidney injury (AKI) and chronic kidney disease (CKD) is not fully understood. However, recent studies suggest that such patients have a higher-than-normal level of cellular senescence and accelerated ageing. METHODS This study aimed to discover key biomarkers of senescence in AKI and CKD patients compared to other chronic ageing diseases in controls using OLINK proteomics. RESULTS We show that senescence proteins CKAP4 (p-value < 0.0001) and PTX3 (p-value < 0.0001) are upregulated in AKI and CKD patients compared with controls with chronic diseases, suggesting the proteins may play a role in overall kidney disease development. CONCLUSIONS CKAP4 was found to be differentially expressed in both AKI and CKD when compared to UHCs; hence, this biomarker could be a prognostic senescence biomarker of both AKI and CKD.
Collapse
Affiliation(s)
- Sean McCallion
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Thomas McLarnon
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Eamonn Cooper
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Andrew R. English
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
- School of Health and Life Sciences, Teesside University, Campus Heart, Middlesbrough TS1 3BX, UK
| | - Steven Watterson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Melody El Chemaly
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Cathy McGeough
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Amanda Eakin
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Tan Ahmed
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Philip Gardiner
- Western Health and Social Care Trust (WHSCT), Altnagelvin Area Hospital, Londonderry BT47 6SB, UK
| | - Adrian Pendleton
- Belfast Health and Social Care Trust (BHSCT), Belfast City Hospital, Belfast BT9 7AB, UK
| | - Gary Wright
- Belfast Health and Social Care Trust (BHSCT), Belfast City Hospital, Belfast BT9 7AB, UK
| | - Declan McGuigan
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Maurice O’Kane
- Western Health and Social Care Trust (WHSCT), Altnagelvin Area Hospital, Londonderry BT47 6SB, UK
| | - Aaron Peace
- Western Health and Social Care Trust (WHSCT), Altnagelvin Area Hospital, Londonderry BT47 6SB, UK
| | - Ying Kuan
- Western Health and Social Care Trust (WHSCT), Altnagelvin Area Hospital, Londonderry BT47 6SB, UK
| | - David S. Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Catriona Kelly
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Victoria McGilligan
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Elaine K. Murray
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Frank McCarroll
- Western Health and Social Care Trust (WHSCT), Altnagelvin Area Hospital, Londonderry BT47 6SB, UK
| | - Anthony J. Bjourson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| | - Taranjit Singh Rai
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT48 7JL, UK
| |
Collapse
|
4
|
Zhang ZZ, Nasir A, Li D, Khan S, Bai Q, Yuan F. Effect of dexmedetomidine on ncRNA and mRNA profiles of cerebral ischemia-reperfusion injury in transient middle cerebral artery occlusion rats model. Front Pharmacol 2024; 15:1437445. [PMID: 39170713 PMCID: PMC11335533 DOI: 10.3389/fphar.2024.1437445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Ischemic stroke poses a significant global health burden, with rapid revascularization treatments being crucial but often insufficient to mitigate ischemia-reperfusion (I/R) injury. Dexmedetomidine (DEX) has shown promise in reducing cerebral I/R injury, but its potential molecular mechanism, particularly its interaction with non-coding RNAs (ncRNAs), remains unclear. This study investigates DEX's therapeutic effect and potential molecular mechanisms in reducing cerebral I/R injury. A transient middle cerebral artery obstruction (tMACO) model was established to simulate cerebral I/R injury in adult rats. DEX was administered pre-ischemia and post-reperfusion. RNA sequencing and bioinformatic analyses were performed on the ischemic cerebral cortex to identify differentially expressed non-coding RNAs (ncRNAs) and mRNAs. The sequencing results showed 6,494 differentially expressed (DE) mRNA and 2698 DE circRNA between the sham and tMCAO (I/R) groups. Additionally, 1809 DE lncRNA, 763 DE mRNA, and 2795 DE circRNA were identified between the I/R group and tMCAO + DEX (I/R + DEX) groups. Gene ontology (GO) analysis indicated significant enrichment in multicellular biogenesis, plasma membrane components, and protein binding. KEGG analysis further highlighted the potential mechanism of DEX action in reducing cerebral I/R injury, with hub genes involved in inflammatory pathways. This study demonstrates DEX's efficacy in reducing cerebral I/R injury and offers insights into its brain-protective effects, especially in ischemic stroke. Further research is warranted to fully understand DEX's neuroprotective mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Zhen Zhen Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Yuan
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Kim ST, Xia Y, Cho PD, Ho JK, Patel S, Lee C, Ardehali A. Safety and efficacy of delaying lung transplant surgery to a morning start. JTCVS OPEN 2023; 16:1008-1017. [PMID: 38204689 PMCID: PMC10775029 DOI: 10.1016/j.xjon.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 01/12/2024]
Abstract
Objective We aimed to evaluate the safety and efficacy of delaying lung transplantation until morning for donors with cross-clamp times occurring after 1:30 am. Methods All consented adult lung transplant recipients between March 2018 and May 2022 with donor cross-clamp times between 1:30 am and 5 am were enrolled prospectively in this study. Skin incision for enrolled recipients was delayed until 6:30 am (Night group). The control group was identified using a 1:2 logistic propensity score method and included recipients of donors with cross-clamp times occurring at any other time of day (Day group). Short- and medium-term outcomes were examined between groups. The primary endpoint was early mortality (30-day and in-hospital). Results Thirty-four patients were enrolled in the Night group, along with 68 well-matched patients in the Day group. As expected, donors in the Night group had longer cold ischemia times compared to the Day group (344 minutes vs 285 minutes; P < .01). Thirty-day mortality (3% vs 3%; P = .99), grade 3 primary graft dysfunction at 72 hours (8% vs 4%; P = .40), postoperative complications (26% vs 38%; P = .28), and hospital length of stay (15 days vs 14 days; P = .91) were similar in the 2 groups. No significant differences were noted between groups in 3-year survival (70% vs 77%; P = .30) or freedom from chronic lung allograft dysfunction (91% vs 95%; P = .75) at 3 years post-transplantation. The median follow-up was 752.5 days (interquartile range, 487-1048 days). Conclusions Lung transplant recipients with donor cross-clamp times scheduled after 1:30 am may safely have their operations delayed until 6:30 am with acceptable outcomes. Adoption of such a policy in clinically appropriate settings may lead to an alternative workflow and improved team well-being.
Collapse
Affiliation(s)
- Samuel T. Kim
- David Geffen School of Medicine, University of California, Los Angeles, Calif
- Division of Cardiac Surgery, Department of Surgery, University of California, Los Angeles, Calif
| | - Yu Xia
- Division of Cardiac Surgery, Department of Surgery, University of California, Los Angeles, Calif
| | - Peter D. Cho
- David Geffen School of Medicine, University of California, Los Angeles, Calif
| | - Jonathan K. Ho
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Calif
| | - Swati Patel
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Calif
| | - Christine Lee
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Calif
| | - Abbas Ardehali
- Division of Cardiac Surgery, Department of Surgery, University of California, Los Angeles, Calif
| |
Collapse
|
7
|
Felli E, Felli E, Muttillo EM, Urade T, Laracca GG, Giannelli V, Famularo S, Geny B, Ettorre GM, Rombouts K, Pinzani M, Diana M, Gracia-Sancho J. Liver ischemia-reperfusion injury: From trigger loading to shot firing. Liver Transpl 2023; 29:1226-1233. [PMID: 37728488 DOI: 10.1097/lvt.0000000000000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
An ischemia-reperfusion injury (IRI) results from a prolonged ischemic insult followed by the restoration of blood perfusion, being a common cause of morbidity and mortality, especially in liver transplantation. At the maximum of the potential damage, IRI is characterized by 2 main phases. The first is the ischemic phase, where the hypoxia and vascular stasis induces cell damage and the accumulation of damage-associated molecular patterns and cytokines. The second is the reperfusion phase, where the local sterile inflammatory response driven by innate immunity leads to a massive cell death and impaired liver functionality. The ischemic time becomes crucial in patients with underlying pathophysiological conditions. It is possible to compare this process to a shooting gun, where the loading trigger is the ischemia period and the firing shot is the reperfusion phase. In this optic, this article aims at reviewing the main ischemic events following the phases of the surgical timeline, considering the consequent reperfusion damage.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Emanuele Felli
- Department of Digestive Surgery and Liver Transplantation, University Hospital of Tours, France
| | - Edoardo M Muttillo
- Department of Medical Surgical Science and Translational Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Takeshi Urade
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Giovanni G Laracca
- Department of Medical Surgical Science and Translational Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Valerio Giannelli
- Department of Transplantation and General Surgery, San Camillo Hospital, Italy
| | - Simone Famularo
- Department of Biomedical Science, Humanitas University Pieve Emanuele, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Research Institute Against Cancer of the Digestive System (IRCAD), France
| | - Bernard Geny
- Institute of Physiology, EA3072 Mitochondria Respiration and Oxidative Stress, University of Strasbourg, France
| | - Giuseppe M Ettorre
- Department of Transplantation and General Surgery, San Camillo Hospital, Italy
| | - Krista Rombouts
- University College London - Institute for Liver and Digestive Health, Royal Free Hospital, NW3 2PF London, United Kingdom
| | - Massimo Pinzani
- University College London - Institute for Liver and Digestive Health, Royal Free Hospital, NW3 2PF London, United Kingdom
| | - Michele Diana
- Research Institute Against Cancer of the Digestive System (IRCAD), France
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, Hospital Clínic Barcelona, CIBEREHD, Barcelona, Spain
| |
Collapse
|
8
|
Jin X, Zhao X. A new immune checkpoint-associated nine-gene signature for prognostic prediction of glioblastoma. Medicine (Baltimore) 2023; 102:e33150. [PMID: 36862886 PMCID: PMC9981394 DOI: 10.1097/md.0000000000033150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant neurological tumor that has a poor prognosis. While pyroptosis affects cancer cell proliferation, invasion and migration, function of pyroptosis-related genes (PRGs) in GBM as well as the prognostic significance of PRGs remain obscure. By analyzing the mechanisms involved in the association between pyroptosis and GBM, our study hopes to provide new insights into the treatment of GBM. Here, 32 out of 52 PRGs were identified as the differentially expressed genes between GBM tumor versus normal tissues. And all GBM cases were assigned to 2 groups according to the expression of the differentially expressed genes using comprehensive bioinformatics analysis. The least absolute shrinkage and selection operator analysis led to the construction of a 9-gene signature, and the cancer genome atlas cohort of GBM patients were categorized into high risk and low risk subgroups. A significant increase in the survival possibility was found in low risk patients in comparison with the high risk ones. Consistently, low risk patients of a gene expression omnibus cohort displayed a markedly longer overall survival than the high risk counterparts. The risk score calculated using the gene signature was found to be an independent predictor of survival of GBM cases. Besides, we observed significant differences in the expression levels of immune checkpoints between the high risk versus low risk GBM cases, providing instructive suggestions for immunotherapy of GBM. Overall, the present study developed a new multigene signature for prognostic prediction of GBM.
Collapse
Affiliation(s)
- Xiao Jin
- The Personnel Department, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Fengtai District, Beijing, China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Ke Y, Wu K, Shen C, Zhu Y, Xu C, Li Q, Hu J, Liu S. Clinical Utility of Circulating Pentraxin 3 as a Prognostic Biomarker in Coronavirus Disease 2019: A Systematic Review and Meta-analysis. Infect Dis Ther 2023; 12:67-80. [PMID: 36443545 PMCID: PMC9707160 DOI: 10.1007/s40121-022-00730-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Pentraxin 3 (PTX3) is involved in inflammation regulation and has a certain association with infectious diseases. However, its specific correlation with infectious diseases remains controversial. This study aimed to analyze the association between them and explore the possible role of PTX3 in the prognosis of coronavirus disease 2019 (COVID-19). METHODS Five databases (PubMed, Cochrane Library, Embase, Clinicaltrials.gov, and gray literature) were searched. Outcomes were expressed as a standardized mean difference (SMD) and 95% confidence intervals (CI). The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of included articles. Stata 12 and Meta-DiSc were applied to analyze the pooled data. Receiver operating characteristic (ROC) curves were conducted to determine the prognostic value of PTX3 for mortality. RESULTS Six articles met the inclusion criteria. Circulating PTX3 levels had a nonsignificant difference between intensive care unit (ICU) and non-ICU patients with COVID-19 [SMD 1.37 (-0.08, 2.81); I2 = 93.9%, P < 0.01], while the PTX3 levels in nonsurvival COVID-19 patients was significantly lower than those in survival patients [SMD -1.41 (-1.92, -0.91); I2 = 66.4%, P = 0.051]. Circulating PTX3 had good mortality prediction ability (area under ROC curve, AUC = 0.829) in COVID-19. Funnel plots and Egger's tests showed low probabilities of publication bias. Through sensitivity analysis, the results of this study were robust. CONCLUSION This study found that PTX3 was differentially expressed between survival and nonsurvival patients with COVID-19, while there was no significant difference between ICU and non-ICU patients. Meanwhile, circulating PTX3 may be a good biomarker for monitoring the prognosis of COVID-19, which may provide new ideas and directions for clinical and scientific research.
Collapse
Affiliation(s)
- Yani Ke
- Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Kaihan Wu
- The First Clinical Medical College of Zhejiang, Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Chenglu Shen
- The First Clinical Medical College of Zhejiang, Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Yuqing Zhu
- The First Clinical Medical College of Zhejiang, Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Chuchu Xu
- The First Clinical Medical College of Zhejiang, Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Qiushuang Li
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China
| | - Jie Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| | - Shan Liu
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
10
|
Song YK, Yuan HX, Jian YP, Chen YT, Liang KF, Liu XJ, Ou ZJ, Liu JS, Li Y, Ou JS. Pentraxin 3 in Circulating Microvesicles: a Potential Biomarker for Acute Heart Failure After Cardiac Surgery with Cardiopulmonary Bypass. J Cardiovasc Transl Res 2022; 15:1414-1423. [PMID: 35879589 DOI: 10.1007/s12265-022-10253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery. Patients' demographics, medical history, surgical data, and laboratory results were collected. The levels of PTX3 in MVs were significantly elevated during perioperative surgery, which was increased more in the AHF group. The concentrations of PTX3 in MVs at postoperative 12 h were independent risk factors for AHF with the area under the ROC curve of 0.920. The concentration of PTX3 in MVs may be a novel biomarker for prediction of AHF after cardiac surgery.
Collapse
Affiliation(s)
- Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
11
|
Xu Y, Hu Y, Geng Y, Zhao N, Jia C, Song H, Bai W, Guo C, Wang L, Ni Y, Qi X. Pentraxin 3 depletion (PTX3 KD) inhibited myocardial fibrosis in heart failure after myocardial infarction. Aging (Albany NY) 2022; 14:4036-4049. [PMID: 35522573 PMCID: PMC9134954 DOI: 10.18632/aging.204070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Background: HF is a common complication of MI. The underlying mechanisms of myocardial fibrosis in HF after MI are incompletely defined. Here, this study aims to investigate the role of PTX3 KD in HF after MI. Methods: Bioinformatics analysis based on GSE86569 dataset was performed to explore the potential role of PTX3 in HF. Male C57/BL6J mice were administered with lentiviral vector encoding PTX3 KD or empty vector, and then underwent either coronary ligation or sham surgery. Echocardiography, Masson staining, and immunofluorescence counterstaining were conducted to evaluate the cardiac function and fibrosis. Cardiac fibroblasts were isolated and transfected with lentiviral vector encoding PTX3 KD in vitro to verify the in vivo findings. Results: Bioinformatics analysis based on GSE86569 revealed the aberrant expression of PTX3 in HF patients. Echocardiography showed that PTX3 KD reversed the HF-induced cardiac dysfunction with better cardiac function parameters. Masson staining demonstrated that the obvious infarct and high fibrosis ratio in HF mice were remarkably improved after PTX3 KD. Immunofluorescence staining indicated that the HF-induced increase expression of α-SMA was significantly suppressed by PTX3 KD. Additionally, both in vivo and in vitro results confirmed that PTX3 KD decreased the fibrosis-related up-regulation of collagen I, collagen III, and p-STAT3. However, the result was opposite after IL-6 treatment. Conclusions: PTX3 KD protects the cardiac function and counteracts the myocardial fibrosis by down-regulating IL-6/STAT3 pathway in HF.
Collapse
Affiliation(s)
- Yufang Xu
- Department of Pharmacy, Hebei People's Hospital, Shijiazhuang 050051, Hebei, China
| | - Yiting Hu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Yanping Geng
- Cardiovascular Medicine, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Na Zhao
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Caiyun Jia
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Haojing Song
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Wanjun Bai
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Caihui Guo
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Lili Wang
- Cardiovascular Medicine, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Yanhui Ni
- Cardiovascular Medicine, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Xiaoyong Qi
- Cardiovascular Medicine, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
12
|
Novel Soluble Mediators of Innate Immune System Activation in Solid Allograft Rejection. Transplantation 2022; 106:500-509. [PMID: 34049364 DOI: 10.1097/tp.0000000000003834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the past years, solid allograft rejection has been considered the consequence of either cellular- or antibody-mediated reaction both being part of the adaptive immune response, whereas the role of innate immunity has been mostly considered less relevant. Recently, a large body of evidence suggested that the innate immune response and its soluble mediators may play a more important role during solid allograft rejection than originally thought. This review will highlight the role of novel soluble mediators that are involved in the activation of innate immunity during alloimmune response and solid allograft rejection. We will also discuss emerging strategies to alleviate the aforementioned events. Hence, novel, feasible, and safe clinical therapies are needed to prevent allograft loss in solid organ transplantation. Fully understanding the role of soluble mediators of innate immune system activation may help to mitigate solid allograft rejection and improve transplanted recipients' outcomes.
Collapse
|
13
|
Zhao B, Li H, Cao S, Zhong W, Li B, Jia W, Ning Z. Negative Regulators of Inflammation Response to the Dynamic Expression of Cytokines in DF-1 and MDCK Cells Infected by Avian Influenza Viruses. Inflammation 2021; 45:573-589. [PMID: 34581936 DOI: 10.1007/s10753-021-01568-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
The H5N1 and H9N2 avian influenza viruses (AIVs) seriously endanger the poultry industry and threaten human health. Characteristic inflammatory responses caused by H5N1 and H9N2 AIVs in birds and mammals result in unique clinical manifestations. The role of anti-inflammatory regulators, PTX3, Del-1, and GDF-15, in H5N1 and H9N2-AIV-mediated inflammation in birds and mammals has not yet been verified. Here, the expression of PTX3, Del-1, and GDF-15 in DF-1 and MDCK cells infected with H5N1 and H9N2 AIVs and their effect on inflammatory cytokines were analyzed. Infection with both AIVs increased PTX3, Del-1, and GDF-15 expression in DF-1 and MDCK cells. Infection with H9N2 or H5N1 AIV in DF-1 and MDCK cells with overexpression of all three factors, either alone or in combination, inhibited the expression of tested inflammatory cytokines. Furthermore, co-expression of PTX3, Del-1, and GDF-15 enhanced the inhibition, irrespective of the cell line. The findings from this study offer insight into the pathogenic differences between H5N1 and H9N2 AIVs in varied hosts. Moreover, our findings can be used to help screen for host-specific anti-inflammatory agents.
Collapse
Affiliation(s)
- Bingqian Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Suilan Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
14
|
Yu N, Hu Y, Cui H, Cheng L, Chen X. Evaluating pentraxin-3 and hypersensitivity CRP expression in obese pregnancies. Taiwan J Obstet Gynecol 2021; 60:816-820. [PMID: 34507654 DOI: 10.1016/j.tjog.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE This study was designed to evaluate the correlation between serum pentraxin-3 (PTX3)/hypersensitivity CRP (hs-CRP) expression and obesity during pregnancy and their application as inflammatory biomarkers in obese pregnant women. MATERIALS AND METHODS Pregnant women scheduled to experience a single-birth at our hospital between 2016 and 2017 were selected for this nested case-control study. These patients were evaluated for age and gestational age in the first trimester (11-14 weeks), had their body mass index (BMI) calculated and were subjected to an OGTT between Week 24 and 28 of pregnancy. Obese patients with normal OGTT and a BMI of ≥30 kg/m2 in the second trimester were selected as the obese group (OBE, n = 80), and non-obese pregnant women with normal OGTT with a BMI of <30 kg/m2 were selected as the control group (CON, n = 80). ELISA was used to detect the expression of PTX3 and hs-CRP. RESULTS The expression of both PTX3 and hs-CRP increased in both groups, with increasing gestational age (P < 0.05). However, hs-CRP level in Group OBE was increased, compared to that in the healthy control (P < 0.01), during the second trimester. PTX3 expression was also significantly higher in OBE samples than in the control (P < 0.05), during the third trimester; correlation analysis demonstrated that PTX3 was positively correlated with hs-CRP, BMI, fasting plasma glucose and HOMA-IR. CONCLUSIONS The expression levels of both PTX3 and hs-CRP increased with increasing gestational age, and PTX3 expression was related to BMI, which serves to confirm the inflammatory response in these patients.
Collapse
Affiliation(s)
- Ning Yu
- Graduate School of Tianjin Medical University, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin Key Laboratory of Human Development and Reproduction Regulation, Tianjin, 300070, China
| | - Yuanjing Hu
- Graduate School of Tianjin Medical University, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin Key Laboratory of Human Development and Reproduction Regulation, Tianjin, 300070, China.
| | - Hongyan Cui
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin Key Laboratory of Human Development and Reproduction Regulation, Tianjin, 300100, China
| | - Lan Cheng
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin Key Laboratory of Human Development and Reproduction Regulation, Tianjin, 300100, China
| | - Xu Chen
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin Key Laboratory of Human Development and Reproduction Regulation, Tianjin, 300100, China
| |
Collapse
|
15
|
Oggioni M, Mercurio D, Minuta D, Fumagalli S, Popiolek-Barczyk K, Sironi M, Ciechanowska A, Ippati S, De Blasio D, Perego C, Mika J, Garlanda C, De Simoni MG. Long pentraxin PTX3 is upregulated systemically and centrally after experimental neurotrauma, but its depletion leaves unaltered sensorimotor deficits or histopathology. Sci Rep 2021; 11:9616. [PMID: 33953334 PMCID: PMC8100171 DOI: 10.1038/s41598-021-89032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Long pentraxin PTX3, a pattern recognition molecule involved in innate immune responses, is upregulated by pro-inflammatory stimuli, contributors to secondary damage in traumatic brain injury (TBI). We analyzed PTX3 involvement in mice subjected to controlled cortical impact, a clinically relevant TBI mouse model. We measured PTX3 mRNA and protein in the brain and its circulating levels at different time point post-injury, and assessed behavioral deficits and brain damage progression in PTX3 KO mice. PTX3 circulating levels significantly increased 1-3 weeks after injury. In the brain, PTX3 mRNA was upregulated in different brain areas starting from 24 h and up to 5 weeks post-injury. PTX3 protein significantly increased in the brain cortex up to 3 weeks post-injury. Immunohistochemical analysis showed that, 48 h after TBI, PTX3 was localized in proximity of neutrophils, likely on neutrophils extracellular traps (NETs), while 1- and 2- weeks post-injury PTX3 co-localized with fibrin deposits. Genetic depletion of PTX3 did not affect sensorimotor deficits up to 5 weeks post-injury. At this time-point lesion volume and neuronal count, axonal damage, collagen deposition, astrogliosis, microglia activation and phagocytosis were not different in KO compared to WT mice. Members of the long pentraxin family, neuronal pentraxin 1 (nPTX1) and pentraxin 4 (PTX4) were also over-expressed in the traumatized brain, but not neuronal pentraxin 2 (nPTX2) or short pentraxins C-reactive protein (CRP) and serum amyloid P-component (SAP). The long-lasting pattern of activation of PTX3 in brain and blood supports its specific involvement in TBI. The lack of a clear-cut phenotype in PTX3 KO mice may depend on the different roles of this protein, possibly involved in inflammation early after injury and in repair processes later on, suggesting distinct functions in acute phases versus sub-acute or chronic phases. Brain long pentraxins, such as PTX4-shown here to be overexpressed in the brain after TBI-may compensate for PTX3 absence.
Collapse
Affiliation(s)
- Marco Oggioni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Domenico Mercurio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Denise Minuta
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, 20132 Milan, Italy
| | - Stefano Fumagalli
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Katarzyna Popiolek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marina Sironi
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy
| | - Agata Ciechanowska
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Stefania Ippati
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Scientific Institute, San Raffaele Hospital, 20132 Milan, Italy
| | - Daiana De Blasio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlo Perego
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Joanna Mika
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy ,grid.452490.eHumanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, 20090 Italy
| | - Maria-Grazia De Simoni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
16
|
Divella C, Stasi A, Franzin R, Rossini M, Pontrelli P, Sallustio F, Netti GS, Ranieri E, Lacitignola L, Staffieri F, Crovace AM, Lucarelli G, Ditonno P, Battaglia M, Daha MR, van der Pol P, van Kooten C, Grandaliano G, Gesualdo L, Stallone G, Castellano G. Pentraxin-3-mediated complement activation in a swine model of renal ischemia/reperfusion injury. Aging (Albany NY) 2021; 13:10920-10933. [PMID: 33875620 PMCID: PMC8109140 DOI: 10.18632/aging.202992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Pentraxins are a family of evolutionarily conserved pattern recognition molecules with pivotal roles in innate immunity and inflammation, such as opsonization of pathogens during bacterial and viral infections. In particular, the long Pentraxin 3 (PTX3) has been shown to regulate several aspects of vascular and tissue inflammation during solid organ transplantation. Our study investigated the role of PTX3 as possible modulator of Complement activation in a swine model of renal ischemia/reperfusion (I/R) injury. We demonstrated that I/R injury induced early PTX3 deposits at peritubular and glomerular capillary levels. Confocal laser scanning microscopy revealed PTX3 deposits co-localizing with CD31+ endothelial cells. In addition, PTX3 was associated with infiltrating macrophages (CD163), dendritic cells (SWC3a) and myofibroblasts (FSP1). In particular, we demonstrated a significant PTX3-mediated activation of classical (C1q-mediated) and lectin (MBL-mediated) pathways of Complement. Interestingly, PTX3 deposits co-localized with activation of the terminal Complement complex (C5b-9) on endothelial cells, indicating that PTX3-mediated Complement activation occurred mainly at the renal vascular level. In conclusion, these data indicate that PTX3 might be a potential therapeutic target to prevent Complement-induced I/R injury.
Collapse
Affiliation(s)
- Chiara Divella
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paola Pontrelli
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari, Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elena Ranieri
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Luca Lacitignola
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Alberto Maria Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Mohamed R Daha
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | - Peter van der Pol
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, University of Leiden, Leiden, The Netherlands
| | | | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Brilland B, Vinatier E, Subra JF, Jeannin P, Augusto JF, Delneste Y. Anti-Pentraxin Antibodies in Autoimmune Diseases: Bystanders or Pathophysiological Actors? Front Immunol 2021; 11:626343. [PMID: 33664737 PMCID: PMC7921723 DOI: 10.3389/fimmu.2020.626343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Pentraxins are soluble innate immunity receptors involved in sensing danger molecules. They are classified as short (CRP, SAP) and long pentraxin subfamilies, including the prototypic long pentraxin PTX3. Pentraxins act mainly as bridging molecules favoring the clearance of microbes and dead cells. They are also involved in many other biological processes, such as regulation of complement activation, inflammation and tissue homeostasis. Autoantibodies directed against pentraxins have been reported in various autoimmune diseases, especially in systemic lupus erythematosus and ANCA-associated vasculitis. In this review, we review the main biological characteristics and functions of pentraxins and summarize data concerning autoantibodies directed against pentraxins in the context of autoimmune diseases and discuss their potential pathological role.
Collapse
Affiliation(s)
- Benoit Brilland
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France.,Université d'Angers, INSERM, CRCINA, Angers, France
| | - Emeline Vinatier
- Université d'Angers, INSERM, CRCINA, Angers, France.,CHU Angers, Service d'Immunologie et Allergologie, Angers, France
| | - Jean-François Subra
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France.,Université d'Angers, INSERM, CRCINA, Angers, France
| | - Pascale Jeannin
- Université d'Angers, INSERM, CRCINA, Angers, France.,CHU Angers, Service d'Immunologie et Allergologie, Angers, France
| | - Jean-François Augusto
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France.,Université d'Angers, INSERM, CRCINA, Angers, France
| | - Yves Delneste
- Université d'Angers, INSERM, CRCINA, Angers, France.,CHU Angers, Service d'Immunologie et Allergologie, Angers, France
| |
Collapse
|
18
|
He D, Yan L. MiR-29b-3p aggravates cardiac hypoxia/reoxygenation injury via targeting PTX3. Cytotechnology 2021; 73:91-100. [PMID: 33505117 DOI: 10.1007/s10616-020-00446-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Our current research aimed to decipher the role and underlying mechanism with regard to miR-29b-3p involving in myocardial ischemia/reperfusion (I/R) injury. In the present study, cardiomyocyte H9c2 cell was used, and hypoxia/reoxygenation (H/R) model was established to mimic the myocardial I/R injury. The expressions of miR-29b-3p and pentraxin 3 (PTX3) were quantified deploying qRT-PCR and Western blot, respectively. The levels of LDH, TNF-α, IL-1β and IL-6 were detected to evaluate cardiomyocyte apoptosis and inflammatory response. Cardiomyocyte viability and apoptosis were examined employing CCK-8 assay and flow cytometry, respectively. Verification of the targeting relationship between miR-29b-3p and PTX3 was conducted using a dual-luciferase reporter gene assay. It was found that miR-29b-3p expression in H9c2 cells was up-regulated by H/R, and a remarkable down-regulation of PTX3 expression was demonstrated. MiR-29b-3p significantly promoted of release of inflammatory cytokines of H9c2 cells, and it also constrained the proliferation and promoted the apoptosis of H9c2 cells. Additionally, PTX3 was inhibited by miR-29b-3p at both mRNA and protein levels, and it was identified as a direct target of miR-29b-3p. PTX3 overexpression could reduce the inflammatory response, increase the viability of H9c2 cells, and inhibit apoptosis. Additionally, PTX3 counteracted the function of miR-29b-3p during the injury of H9c2 cells induced by H/R. In summary, miR-29b-3p was capable of aggravating the H/R injury of H9c2 cells by repressing the expression of PTX3.
Collapse
Affiliation(s)
- Dan He
- Department of Cardiology, Wuhan Asia Heart Hospital, Jinghan Avenue No. 753, Jianghan District, Wuhan, 430022 Hubei China
| | - Lei Yan
- Department of Thoracic Surgery, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430015 Hubei China
| |
Collapse
|
19
|
Kamel M, Ahmed SM, Abdelzaher W. The potential protective effect of modafinil in intestinal ischemic reperfusion-induced in rats. Int Immunopharmacol 2020; 88:106983. [PMID: 33182022 DOI: 10.1016/j.intimp.2020.106983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/22/2020] [Accepted: 09/04/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Intestinal ischemia reperfusion (IR) is a pathophysiologic process that leads to oxidative stress and acute inflammatory responses. Understanding the mechanisms explaining this inflammation is essential to developing therapeutic strategies. Therefore, the purpose of this study was to evaluate the protective outcome of modafinil (Mod) against intestinal damages caused by intestinal IR injury. METHODS/MATERIALS Fourty adult Male Wistar rats were randomly divided into four groups: sham control group; intestinal IR group; Mod pre-treated IR group and Mod post-treated IR group. Mod in a dose of 10 mg/kg was injected intraperitoneally once daily for 7 days pre or post IR treatment. RESULTS Mod significantly attenuated the IR induced elevations in intestinal malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin 1-β (IL-1β) and P-glycoprotein (P-gp) levels, caspase-3 activity. However, a significant increase in TAC was reported as compared with the IR group but its post-treated IR group was highly protective. Mod post-treatment down-regulated the IR induced cyclo-oxygenase-2 (COX-2) over-expression. Distorted mucosa with loss of surface epithelial cells, epithelial separation oedematous lamina propria and inflammatory cellular infiltration detected by histopathological examination of intestinal tissue, were markedly ameliorated by Mod post-treatment. On the other hand, Mod pre-treatment showed less protection against intestinal IR in rats. CONCLUSION Current study suggests that Mod post-treatment ameliorated intestinal damages, so it can be considered a potential therapeutic agent to protect against the major clinical challenge of intestinal injury resulting from IR.
Collapse
Affiliation(s)
- MahaYehia Kamel
- Department of Pharmacology, Faculty of Medicine, Minia University, Egypt
| | - Sabreen Mahmoud Ahmed
- Depatment of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Delegated to Deraya University-New Minia City, Egypt
| | | |
Collapse
|
20
|
Kulkarni HS, Ramphal K, Ma L, Brown M, Oyster M, Speckhart KN, Takahashi T, Byers DE, Porteous MK, Kalman L, Hachem RR, Rushefski M, McPhatter J, Cano M, Kreisel D, Scavuzzo M, Mittler B, Cantu E, Pilely K, Garred P, Christie JD, Atkinson JP, Gelman AE, Diamond JM. Local complement activation is associated with primary graft dysfunction after lung transplantation. JCI Insight 2020; 5:138358. [PMID: 32750037 PMCID: PMC7526453 DOI: 10.1172/jci.insight.138358] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The complement system plays a key role in host defense but is activated by ischemia/reperfusion injury (IRI). Primary graft dysfunction (PGD) is a form of acute lung injury occurring predominantly due to IRI, which worsens survival after lung transplantation (LTx). Local complement activation is associated with acute lung injury, but whether it is more reflective of allograft injury compared with systemic activation remains unclear. We proposed that local complement activation would help identify those who develop PGD after LTx. We also aimed to identify which complement activation pathways are associated with PGD. METHODS We performed a multicenter cohort study at the University of Pennsylvania and Washington University School of Medicine. Bronchoalveolar lavage (BAL) and plasma specimens were obtained from recipients within 24 hours after LTx. PGD was scored based on the consensus definition. Complement activation products and components of each arm of the complement cascade were measured using ELISA. RESULTS In both cohorts, sC4d and sC5b-9 levels were increased in BAL of subjects with PGD compared with those without PGD. Subjects with PGD also had higher C1q, C2, C4, and C4b, compared with subjects without PGD, suggesting classical and lectin pathway involvement. Ba levels were higher in subjects with PGD, suggesting alternative pathway activation. Among lectin pathway–specific components, MBL and FCN-3 had a moderate-to-strong correlation with the terminal complement complex in the BAL but not in the plasma. CONCLUSION Complement activation fragments are detected in the BAL within 24 hours after LTx. Components of all 3 pathways are locally increased in subjects with PGD. Our findings create a precedent for investigating complement-targeted therapeutics to mitigate PGD. FUNDING This research was supported by the NIH, American Lung Association, Children’s Discovery Institute, Robert Wood Johnson Foundation, Cystic Fibrosis Foundation, Barnes-Jewish Hospital Foundation, Danish Heart Foundation, Danish Research Foundation of Independent Research, Svend Andersen Research Foundation, and Novo Nordisk Research Foundation. Substantial differences between local and systemic complement activation in lung transplant recipients who develop primary graft dysfunction are identified in two independent cohorts.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristy Ramphal
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lina Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melanie Brown
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Oyster
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaitlyn N Speckhart
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsuyoshi Takahashi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K Porteous
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurel Kalman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramsey R Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melanie Rushefski
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ja'Nia McPhatter
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marlene Cano
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Brigitte Mittler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Edward Cantu
- Department of Surgery, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jason D Christie
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John P Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua M Diamond
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Zhong Y, Li YP, Yin YQ, Hu BL, Gao H. Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol 2020; 86:106768. [PMID: 32679539 DOI: 10.1016/j.intimp.2020.106768] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Dexmedetomidine (DEX) was reported to protect heart against ischemic-reperfusion (IR) but the mechanism herein remains elusive. This study aims to explore the mechanism of DEX on pyroptosis induced by myocardial ischemic reperfusion (MIR). METHODS MIR rat models were established and injected DEX or miR-29b agomir/antagomir separately. The possible effect of DEX or miR-29b on myocardial cells was assessed according to measurement on creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), interleukin-1β (IL-1β) and interleukin-18 (IL-18), myocardial infarction size, myocardial injury and apoptosis. Western blot determined the expression levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and cleaved-caspase-1. Hypoxia/reoxygenation (H/R) cell model was established. The lactate dehydrogenase (LDH) content released by myocardial cells was examined. The relation between miR-29b and FoxO3a was confirmed by dual luciferase reporter gene assay. FoxO3a or ARC level was elevated in H/R myocardial cells to detect its effect on pyroptosis. RESULTS MIR rat models were successfully established, in which cell pyroptosis was triggered as evidenced by increased expression levels of NLRP3, ASC and cleaved-caspase-1. Rats with DEX precondition had attenuated cell pyroptosis and ameliorated inflammatory response. FoxO3a was a target of miR-29b. MiR-29b agomir or miR-29b antagomir could inhibit or promote the protective effect of DEX on MIR. Overexpression of FoxO3a/ARC axis could suppress myocardial pyroptosis induced by H/R. CONCLUSION DEX could ameliorate MIR injury (MIRI) and H/R injury in rats and inhibit H/R induced pyroptosis in myocardial cells via down-regulating miR-29b to activate FoxO3a/ARC axis.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yi-Ping Li
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yong-Qiang Yin
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Bai-Long Hu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Hong Gao
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| |
Collapse
|
22
|
Tuttolomondo A, Pinto A. Serum pentraxin 3 as a clinical biomarker of branch atheromatous disease: a marker of brain ischaemia or an atherotrombosis marker? Eur J Neurol 2020; 27:1100-1101. [DOI: 10.1111/ene.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/30/2022]
Affiliation(s)
- A. Tuttolomondo
- Department of Promoting Health Maternal‐Infant, Excellence and Internal and Specialized Medicine (ProMISE) G. D'Alessandro University of Palermo Palermo Italy
- Internal Medicine and Stroke Care Ward Policlinico ‘P. Giaccone’ Palermo Italy
| | - A. Pinto
- Department of Promoting Health Maternal‐Infant, Excellence and Internal and Specialized Medicine (ProMISE) G. D'Alessandro University of Palermo Palermo Italy
- Internal Medicine and Stroke Care Ward Policlinico ‘P. Giaccone’ Palermo Italy
| |
Collapse
|
23
|
Ponticelli C, Doria A, Moroni G. Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases). J Nephrol 2020; 34:1069-1080. [PMID: 32529559 DOI: 10.1007/s40620-020-00772-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/03/2020] [Indexed: 01/15/2023]
Abstract
The kidney is frequently involved by autoimmune rheumatic diseases. The renal manifestations may be variable, ranging from asymptomatic proteinuria and microscopic haematuria to nephrotic syndrome and rapidly progressive glomerulonephritis or vasculitis. In a number of cases the kidney involvement is related to the treatment of the original disease and may represent a major cause of morbidity and mortality. Thus, it is important for nephrologists and rheumatologists to remember that dysfunction of the kidney may be part of the primary systemic disorder or consequence of its pharmacotherapy. In the first part of this review we will analyse the kidney involvement in four autoimmune connective tissue diseases: systemic lupus erythematosus, Sjögren syndrome, polymyositis/dermatomyositis, and systemic sclerosis. Renal disease is common in lupus and is a main cause of morbidity and mortality. About 10% of patients with Sjögren syndrome may present interstitial nephritis or, more rarely, glomerulonephritis. Myoglobinuria and acute kidney injury is a frequent complication of polymyositis. Renal disease is one of the most serious complications of systemic sclerosis and may present with a dramatic renal crisis, characterized by malignant hypertension, oligo-anuria, and microangiopathic thrombocytopenic anaemia.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, IRCCS Ospedale Maggiore Milano, Via Ampere 126, 20131, Milano, Italy.
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Gabriella Moroni
- Division of Nephrology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico Milano, Milano, Italy
| |
Collapse
|
24
|
Gatto M, Radu CM, Luisetto R, Ghirardello A, Bonsembiante F, Trez D, Valentino S, Bottazzi B, Simioni P, Cavicchioli L, Doria A. Immunization with Pentraxin3 prevents transition from subclinical to clinical lupus nephritis in lupus-prone mice: Insights from renal ultrastructural findings. J Autoimmun 2020; 111:102443. [PMID: 32265078 DOI: 10.1016/j.jaut.2020.102443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/15/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Pentraxin3 (PTX3) is an emerging player in lupus nephritis (LN). Anti-PTX3 antibodies showed to delay LN occurrence in vivo. AIM To evaluate renal changes following immunization with PTX3 in a murine model of LN. MATERIALS AND METHODS Twenty-two lupus-prone New Zealand Black/White (NZB/W)F1 mice were divided into two groups (n = 11) and subcutaneously injected with human recombinant (hr)PTX3 100 μg or phosphate buffer saline (PBS) 200 μl, three times 3 weeks apart, starting before development of proteinuria. Five mice from each group were scheduled for sacrifice at week 22 and 6 from each group at week 29. Renal lesions included electron-dense deposits (EDD), glomerular deposition of IgG, complement and PTX3 as markers of renal inflammation. They were evaluated by immunofluorescence (IF), confocal and immunoelectron microscopy (IEM). Validated semiquantitative scores were used when available to score renal lesions. Chi-squared test with Fisher exact test was used for comparison. RESULTS Nineteen out of 22 mice were sacrificed as scheduled. Only hrPTX3-immunized mice developed anti-PTX3 antibodies. Compared to PBS-injected mice, they displayed a dramatic decrease in glomerular deposits of IgG, C1q and PTX3, as well as in the amount of EDD (p = 0.006) and podocyte effacement (p = 0.043). Importantly, PTX3 was pinpointed inside the EDD and co-localized with nuclear material. CONCLUSIONS Immunization with PTX3 prevented progression from the preclinical to the clinical stage of LN, inciting anti-PTX3 antibodies and preventing renal PTX3 deposition. PTX3 is a novel component of EDD, submitting it as one initiating autoantigen in LN and as potential target for early treatment.
Collapse
Affiliation(s)
- Mariele Gatto
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Claudia M Radu
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Anna Ghirardello
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy; Department of Animal Medicine, Production and Health University of Padova, Italy
| | - Davide Trez
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | | | | | - Paolo Simioni
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Andrea Doria
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, Padova, Italy.
| |
Collapse
|
25
|
Abstract
BACKGROUND Pentraxin 3 is an acute inflammatory protein of the long pentraxin subfamily. A meta-analysis was performed to assess diagnostic accuracy of pentraxin 3 for respiratory tract infections. METHODS We identify studies examining diagnostic value of pentraxin 3 for respiratory tract infections by searching Pubmed, Web of Knowledge, and Cochrane Library. The sensitivity, specificity, negative likelihood ratio (LR), positive LR, and diagnostic odds ratio were pooled. The area under the summary receiver operator characteristic (SROC) curve and Q point value (Q*) were calculated. RESULTS A total of 8 studies with 961 individuals were eligible for this meta-analysis. The pooled sensitivity of pentraxin 3 in diagnosis of respiratory tract infections was 0.78, the pooled specificity was 0.73, the area under the SROC curve was 0.84, and the Q* was 0.77. The area under the SROC curve of serum and bronchoalveolar lavage fluid (BALF) pentraxin 3 was 0.85 and 0.89, respectively. Meta-regression analysis revealed that cutoff value was the source of heterogeneity among the included studies. The Deek funnel plot test suggested no evidence of publication bias. Subgroup analyses showed that the area under the SROC curve of pentraxin 3 in diagnosis of ventilator-associated pneumonia (VAP) was 0.89. CONCLUSION Pentraxin 3 has a moderate accuracy for diagnosing respiratory tract infections and VAP. The overall diagnostic value of BALF level of pentraxin 3 is superior to its serum concentration.
Collapse
|
26
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Liang Y, Li C, Liu B, Zhang Q, Yuan X, Zhang Y, Ling J, Zhao L. Protective effect of extracorporeal membrane oxygenation on intestinal mucosal injury after cardiopulmonary resuscitation in pigs. Exp Ther Med 2019; 18:4347-4355. [PMID: 31777541 PMCID: PMC6862391 DOI: 10.3892/etm.2019.8087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to explore the protective effects of extracorporeal membrane oxygenation (ECMO) on intestinal mucosal injury following cardiopulmonary resuscitation (CPR), and to assess the potential mechanisms involved. A total of 24 healthy adult domestic pigs were selected as the study subjects. A ventricular fibrillation model was induced through programmed electric stimulation. Subsequently, the animals were randomly divided into conventional CPR and CPR+ECMO groups (n=12 per group). The mortality and hemodynamic parameters of the two groups were compared. The expression levels of inflammatory cytokines in the serum and intestinal mucosa were detected by ELISAs. The intestinal mucosa was subjected to hematoxylin and eosin, and immunohistochemical staining, followed by electron microscopy, to assess the degree of apoptosis and necrosis. The animals in both groups recovered from the programmed ventricular fibrillation. In the CPR group, two animals died at 2 h and two more animals died a further 2 h later, resulting in a 33.3% mortality rate, whereas no cases of mortality were observed in the CPR+ECMO group. Compared with the animals in the CPR group, the hemodynamic parameters of the animals in the CPR+ECMO group revealed significantly improved outcomes. Multiple inflammatory factors (tumor necrosis factor α, interleukin-1 and interleukin-6), myeloperoxidase and malondialdehyde levels were decreased, whereas Na/Ca-ATPase and superoxide dismutase levels were elevated in the intestinal mucosa of animals in the CPR+ECMO group compared with those in the CPR group. Additionally, pathological staining demonstrated that the intestinal mucosa tissue in the CPR+ECMO group exhibited less apoptosis, necrosis and inflammatory cell infiltration, which was further supported by a decrease in Bax expression and an increase in Bcl-2 expression. Overall, ECMO after CPR reduced the intestinal mucosal barrier injury after spontaneous circulation recovery, and the mechanism involved decreased inflammation and apoptosis.
Collapse
Affiliation(s)
- Yong Liang
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Chunsheng Li
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Bo Liu
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Qiang Zhang
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Xiaoli Yuan
- Department of Emergency, Beijing Tong-Ren Hospital Affiliated to Capital Medical University, Beijing 100043, P.R. China
| | - Yun Zhang
- Department of Emergency, Beijing Tong-Ren Hospital Affiliated to Capital Medical University, Beijing 100043, P.R. China
| | - Jiyang Ling
- Department of Emergency, Beijing Tong-Ren Hospital Affiliated to Capital Medical University, Beijing 100043, P.R. China
| | - Lianxing Zhao
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|