1
|
Yang L, Zhang H, Huang L, Wang R, Zhang Z, Zeng Y. Identification of natural killer cell-characteristic genes in atherosclerosis based on bioinformatics analysis. Sci Rep 2025; 15:17112. [PMID: 40379756 PMCID: PMC12084388 DOI: 10.1038/s41598-025-98524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/14/2025] [Indexed: 05/19/2025] Open
Abstract
Atherosclerosis (AS), a chronic inflammatory disease with autoimmune components, represents the predominant pathological change underlying cardiovascular diseases. Natural killer (NK) cells, pivotal actors in the innate immune system, play intricate regulatory roles in AS. Our objective was to identify and analyze NK cell-related genes involved in AS pathogenesis. We conducted differential expression analysis and functional enrichment analysis via microarray datasets from AS patients, identified NK cell-characteristic genes and performed subgroup analysis of AS on the basis of the expression levels of these genes. The results revealed that the differentially expressed genes in AS were predominantly associated with immune response activities and were significantly enriched in NK cell-mediated cytotoxicity pathways. PTPN6, ITGAL, TYROBP, SLAMF7, LCP2, HCST, HAVCR2, and VAV3 were identified as NK cell-characteristic genes. Subgroup analysis indicated that in patients with high expression levels of NK cell-characteristic genes, the progression of AS may be driven primarily by immune cell activity, whereas in those with low expression levels, TGF-β signaling may be the primary driving factor. In summary, our findings emphasize the crucial role of NK cell-mediated immunity in AS, offering potential targets for personalized immunomodulatory therapies and highlighting the need for tailored treatments based on different AS subtypes.
Collapse
Affiliation(s)
- Lei Yang
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Huipeng Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Linyan Huang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ruixue Wang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Yi Zeng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2025; 71:317-335. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
3
|
Zheng Q, Wu Y, Zhang X, Zhang Y, Zhu Z, Luan B, Zang P, Sun D. Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning. Sci Rep 2025; 15:12316. [PMID: 40210656 PMCID: PMC11985999 DOI: 10.1038/s41598-025-96907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Atherosclerosis is the major cause of cardiovascular diseases worldwide, and AIDS linked with chronic inflammation and immune activation, increases atherosclerosis risk. The application of bioinformatics and machine learning to identify hub genes for atherosclerosis and AIDS has yet to be reported. Thus, this study aims to identify the hub genes for atherosclerosis and AIDS. Gene expression profiles were downloaded from the Gene Expression Omnibus database. The Robust Multichip Average was performed for data preprocessing, and the limma package was used for screening differentially expressed genes. Enrichment analysis employed GO and KEGG, protein-protein interaction network was constructed. Hub genes were filtered using topological and machine learning algorithms and validated in external cohorts. Then immune infiltration and correlation analysis of hub genes were constructed. Nomogram, receiver operating curve, and single-sample gene set enrichment analysis were applied to evaluate hub genes. This study identified 48 intersecting genes. Enrichment analyses indicated that these genes are significantly enriched in viral response, inflammatory response, and cytokine signaling pathways. CCR5 and OAS1 were identified as common hub genes in atherosclerosis and AIDS for the first time, highlighting their roles in antiviral immunity, inflammation and immune infiltration. These findings contributed to understanding the shared pathogenesis of Atherosclerosis and AIDS and provided possible potential therapeutic targets for immunomodulatory therapy.
Collapse
Affiliation(s)
- Qirui Zheng
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Yupeng Wu
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Pan-Vascular Management Center, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Xiaojiao Zhang
- Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Yuzhu Zhang
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Zaihan Zhu
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Bo Luan
- Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Peizhuo Zang
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China.
- Pan-Vascular Management Center, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
- Liaoning Provincial Key Laboratory of Neurointerventional Therapy and Biomaterials Research and Development, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
| | - Dandan Sun
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, China.
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
- Liaoning Provincial Key Laboratory of Neurointerventional Therapy and Biomaterials Research and Development, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, China.
| |
Collapse
|
4
|
Alles M, Demberg T, Liyanage NP. Emerging role of natural killer cells in non-AIDS comorbidities during suppressive antiretroviral therapy. Curr Opin HIV AIDS 2025; 20:145-153. [PMID: 39774039 PMCID: PMC11802316 DOI: 10.1097/coh.0000000000000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Despite decades of insights about the role of natural killer (NK) cells in HIV infection, their persistent dysregulation despite antiretroviral therapy (ART) and its pathological consequences have been incompletely delineated. In this review, we highlight recent findings on the immunophenotypic and functional alterations of NK cells during virally suppressed HIV infection and explore their potential impact on promoting non-AIDS related comorbidities among people living with HIV (PLWH). RECENT FINDINGS Of note are the apparent persistent activated profiles of NK cells and pathophysiological events such as endoplasmic reticulum (ER) stress in potentially driving NK cell derived inflammation and tissue destruction. Additionally, recent interest in trained immunity is discussed as a potential mediator of ongoing NK cell dysregulation, contributing to comorbidities such as cardiovascular disease and neurocognitive disorders, both with an inflammatory etiology. SUMMARY Clinical and mechanistic evidence suggests persistent activation and dysregulation of the innate immune system are major drivers of non-AIDS comorbidities during virally suppressed HIV infection. Delineating the mechanistic role of specific components of innate immunity such as NK cells in inducing these pathologies will lead to the identification of novel therapeutic/prophylactic strategies to improve the overall health of PLWH.
Collapse
Affiliation(s)
- Mario Alles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Thorsten Demberg
- Southern Research Institute, Infectious Disease Unit, Birmingham, Alabama
| | - Namal P.M. Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| |
Collapse
|
5
|
Gonzalez Melo M, von Eckardstein A, Robert J. Modeling human atherosclerotic lesions in the test tube: Are we there yet? Atherosclerosis 2024; 398:118560. [PMID: 39209673 DOI: 10.1016/j.atherosclerosis.2024.118560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerotic cardiovascular diseases remain a leading cause of morbidity and mortality worldwide. Atherogenesis is a slow and life-long process characterized by the accumulation of lipoproteins and immune cells within the arterial wall. Atherosclerosis has been successfully modeled in animals: However, there are economic, ethical, and translational concerns when using these models. There is also growing recognition of the need for robust human-based in vitro systems that can faithfully recapitulate key aspects of human atherosclerosis. Such systems may offer advantages in terms of scalability, reproducibility, and ability to manipulate specific variables, thereby facilitating a deeper understanding of disease mechanisms and accelerating the development of targeted therapeutics. Leveraging innovative in vitro platforms holds promise in complementing traditional animal models of atherosclerosis. In the present review, we discuss the advantages and disadvantages of recently developed models of atherosclerosis and propose ideas to be considered when developing future generations of models.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Institute of Clinical Chemistry, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Jerome Robert
- Institute of Clinical Chemistry, University Hospital of Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Gunasena M, Alles M, Wijewantha Y, Mulhern W, Bowman E, Gabriel J, Kettelhut A, Kumar A, Weragalaarachchi K, Kasturiratna D, Horowitz JC, Scrape S, Pannu SR, Liu SL, Vilgelm A, Wijeratne S, Bednash JS, Demberg T, Funderburg NT, Liyanage NP. Synergy Between NK Cells and Monocytes in Potentiating Cardiovascular Disease Risk in Severe COVID-19. Arterioscler Thromb Vasc Biol 2024; 44:e243-e261. [PMID: 38989579 PMCID: PMC11448863 DOI: 10.1161/atvbaha.124.321085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Evidence suggests that COVID-19 predisposes to cardiovascular diseases (CVDs). While monocytes/macrophages play a central role in the immunopathogenesis of atherosclerosis, less is known about their immunopathogenic mechanisms that lead to CVDs during COVID-19. Natural killer (NK) cells, which play an intermediary role during pathologies like atherosclerosis, are dysregulated during COVID-19. Here, we sought to investigate altered immune cells and their associations with CVD risk during severe COVID-19. METHODS We measured plasma biomarkers of CVDs and determined phenotypes of circulating immune subsets using spectral flow cytometry. We compared these between patients with severe COVID-19 (severe, n=31), those who recovered from severe COVID-19 (recovered, n=29), and SARS-CoV-2-uninfected controls (controls, n=17). In vivo observations were supported using in vitro assays to highlight possible mechanistic links between dysregulated immune subsets and biomarkers during and after COVID-19. We performed multidimensional analyses of published single-cell transcriptome data of monocytes and NK cells during severe COVID-19 to substantiate in vivo findings. RESULTS During severe COVID-19, we observed alterations in cardiometabolic biomarkers including oxidized-low-density lipoprotein, which showed decreased levels in severe and recovered groups. Severe patients exhibited dysregulated monocyte subsets, including increased frequencies of proinflammatory intermediate monocytes (also observed in the recovered) and decreased nonclassical monocytes. All identified NK-cell subsets in the severe COVID-19 group displayed increased expression of activation and tissue-resident markers, such as CD69 (cluster of differentiation 69). We observed significant correlations between altered immune subsets and plasma oxidized-low-density lipoprotein levels. In vitro assays revealed increased uptake of oxidized-low-density lipoprotein into monocyte-derived macrophages in the presence of NK cells activated by plasma of patients with severe COVID-19. Transcriptome analyses confirmed enriched proinflammatory responses and lipid dysregulation associated with epigenetic modifications in monocytes and NK cells during severe COVID-19. CONCLUSIONS Our study provides new insights into the involvement of monocytes and NK cells in the increased CVD risk observed during and after COVID-19.
Collapse
Affiliation(s)
- Manuja Gunasena
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Mario Alles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Will Mulhern
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Emily Bowman
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Aaren Kettelhut
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Amrendra Kumar
- Department of pathology, College of Medicine, The Ohio State University
| | | | - Dhanuja Kasturiratna
- Department of Mathematics and Statistics, Northern Kentucky University, KY, Highland Heights, KY, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Scott Scrape
- Department of pathology, College of Medicine, The Ohio State University
| | - Sonal R Pannu
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Shan-Lu Liu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Anna Vilgelm
- Department of pathology, College of Medicine, The Ohio State University
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Joseph S Bednash
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Thorsten Demberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nicholas T Funderburg
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Namal P.M. Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| |
Collapse
|
7
|
Wei K, Cao Y, Kong X, Liu C, Gu X. Exploration and Validation of Immune and Therapeutic-Related Hub Genes in Aortic Valve Calcification and Carotid Atherosclerosis. J Inflamm Res 2024; 17:6485-6500. [PMID: 39310903 PMCID: PMC11416122 DOI: 10.2147/jir.s462546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background Cardiovascular diseases, such as aortic valve calcification (AVC) and carotid atherosclerosis (CAS), impose substantial health challenges on a global scale. Both disorders have overlapping risk factors, which might trigger similar immune-inflammatory reactions in both diseases. Methods Shared differentially expressed genes (DEGs) were identified in the AVC and CAS datasets from the Gene Expression Omnibus (GEO). Candidate hub genes associated with immunity were identified using LASSO and immune cell infiltration analysis, and single gene set enrichment analysis (GSEA) was performed on the datasets. Subsequently, the hub genes were confirmed by qRT‒PCR validation in tissue samples. Results A total of 140 upregulated and 65 downregulated common genes were screened. Enrichment analyses highlighted immune system processes, response to stress, and cytokine pathways among the identified CEGs. LASSO identified candidate hub genes, including ANGPTL1, CX3CR1, and CCL4. Immune cell infiltration analysis emphasized the participation of immune cells, including macrophages, γδ T cells, and resting NK cells. The three hub genes were validated by qRT‒PCR analysis. Conclusion Our study explored immunological processes, including immune-related genes and cells, involved in the development of AVC and CAS. In particular, the identified hub genes ANGPTL1, CX3CR1, and CCL4 play crucial roles in mediating immune-inflammatory responses, which are central to the pathogenesis of these cardiovascular diseases, and the involvement of these genes in key immune pathways suggests that they could serve as potential biomarkers for early diagnosis or as targets for therapeutic strategies.
Collapse
Affiliation(s)
- KaiMing Wei
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yuan Cao
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - XiangJin Kong
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - ChuanZhen Liu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - XingHua Gu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
8
|
Guo X, Xiao T, Lin L, Gao Q, Lai B, Liu X, Zhong Z. Proliferation capability of natural killer cells upon cytokines stimulation correlated negatively with serum lactate dehydrogenase level in coronary artery disease patients. Front Immunol 2024; 15:1436747. [PMID: 39286242 PMCID: PMC11402710 DOI: 10.3389/fimmu.2024.1436747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Natural killer (NK) cells are proposed to participate in coronary artery disease (CAD) development. However, little is known about how CAD patients' NK cells respond to different stimulatory factors in terms of proliferation capability. Methods and results Twenty-nine CAD patients' peripheral blood NK cells were isolated and individually treated with IL-2, IL-12, IL-15, IL-18, IL-21, cortisone acetate, hydrocortisone, or ascorbic acid for 36 hours, followed by cell cycle analysis using flow cytometry. The ratio of S and G2/M phase cell number to total cell number was defined as a proliferation index (PrI) and used for proliferative capability indication. The results showed that these eight factors resulted in different life cycle changes in the 29 NK cell samples. Remarkably, 28 out of 29 NK cell samples showed an obvious increase in PrI upon ascorbic acid treatment. The serum lactate dehydrogenase (LDH) level of the 29 CAD patients was measured. The results showed a negative correlation between serum LDH level and the CAD patients' NK cell PrI upon stimulation of interleukins, but not the non-interleukin stimulators. Consistently, a retrospective analysis of 46 CAD patients and 32 healthy donors showed that the circulating NK cell number negatively correlated with the serum LDH level in CAD patients. Unexpectedly, addition of LDH to NK cells significantly enhanced the production of IFN-γ, IL-10 and TNF-α, suggesting a strong regulatory role on NK cell's function. Conclusion Ascorbic acid could promote the proliferation of the CAD patients' NK cells; LDH serum level may function as an indicator for NK cell proliferation capability and an immune-regulatory factor.
Collapse
Affiliation(s)
- Xuemin Guo
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Ting Xiao
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Li Lin
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Bifa Lai
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Xianhui Liu
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Zhixiong Zhong
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| |
Collapse
|
9
|
Menéndez-Valladares P, Acevedo Aguilera R, Núñez-Jurado D, López Azcárate C, Domínguez Mayoral AM, Fernández-Vega A, Pérez-Sánchez S, Lamana Vallverdú M, García-Sánchez MI, Morales Bravo M, Busquier T, Montaner J. A Search for New Biological Pathways in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy by Proteomic Research. J Clin Med 2024; 13:3138. [PMID: 38892848 PMCID: PMC11172732 DOI: 10.3390/jcm13113138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary small vessel disease leading to significant morbidity and mortality. Despite advances in genetic diagnosis, the underlying pathophysiology remains incompletely understood. Proteomic studies offer insights into disease mechanisms by identifying altered protein expression patterns. Here, we conducted a proteomic analysis to elucidate molecular pathways associated with CADASIL. Methods: We enrolled genetically diagnosed CADASIL patients and healthy, genetically related controls. Plasma samples were subjected to proteomic analysis using the Olink platform, measuring 552 proteins across six panels. The data were analyzed from several approaches by using three different statistical methods: Exploratory Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA), differential expression with moderated t-test, and gene set enrichment analysis (GSEA). In addition, bioinformatics analysis, including volcano plot, heatmap, and Variable Importance on Projection (VIP) scores from the PLS-DA model were drawn. Results: Significant differences in protein expression were observed between CADASIL patients and controls. RSPO1 and FGF-19 exhibited elevated levels (p < 0.05), while PPY showed downregulation (p < 0.05) in CADASIL patients, suggesting their involvement in disease pathogenesis. Furthermore, MIC-A/B expression varied significantly between patients with mutations in exon 4 versus exon 11 of the NOTCH3 gene (p < 0.05), highlighting potential immunological mechanisms underlying CADASIL. We identified altered pathways using GSEA, applied after ranking the study data. Conclusions: Our study provides novel insights into the proteomic profile of CADASIL, identifying dysregulated proteins associated with vascular pathology, metabolic dysregulation, and immune activation. These findings contribute to a deeper understanding of CADASIL pathophysiology and may inform the development of targeted therapeutic strategies. Further research is warranted to validate these biomarkers and elucidate their functional roles in disease progression.
Collapse
Affiliation(s)
- Paloma Menéndez-Valladares
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, 41009 Seville, Spain
- Commission of Neurochemistry and Neurological Diseases, Spanish Society of Laboratory Medicine, 08025 Barcelona, Spain
| | - Rosa Acevedo Aguilera
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - David Núñez-Jurado
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Cristina López Azcárate
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Ana María Domínguez Mayoral
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Alejandro Fernández-Vega
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Soledad Pérez-Sánchez
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Marcel Lamana Vallverdú
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | | | - María Morales Bravo
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Teresa Busquier
- Department of Radiology, Virgen Macarena University Hospital, 41009 Seville, Spain;
| | - Joan Montaner
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| |
Collapse
|
10
|
He C, Kim HI, Park J, Guo J, Huang W. The role of immune cells in different stages of atherosclerosis. Int J Med Sci 2024; 21:1129-1143. [PMID: 38774746 PMCID: PMC11103388 DOI: 10.7150/ijms.94570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of immune cells in the intima of arteries. Experimental and clinical evidence shows that both innate and adaptive immunity orchestrate the progression of atherosclerosis. The heterogeneous nature of immune cells within atherosclerosis lesions is important. Studies utilizing high-dimensional mass spectrometry and single-cell RNA sequencing of leukocytes from atherosclerotic lesions show the diversity and adaptability of these immune cell subtypes. Their migration, compositional changes, phenotypic alterations, and adaptive responses are key features throughout atherosclerosis progression. Understanding how these immune cells and their subtypes affect atherogenesis would help to develop novel therapeutic approaches that control atherosclerosis progression. Precise targeting of specific immune system components involved in atherosclerosis, rather than broad suppression of the immune system with anti-inflammatory agents, can more accurately regulate the progress of atherosclerosis with fewer side effects. In this review, we cover the most recent advances in the field of atherosclerosis to understand the role of various immune cells on its development. We focus on the complex network of immune cells and the interaction between the innate immune system and adaptive immune system.
Collapse
Affiliation(s)
- Cong He
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, PR China
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junli Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou 571199, PR China
| | - Wei Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, PR China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou 571199, PR China
| |
Collapse
|
11
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
12
|
Good E, Åkerman L, Nyström S, Jonasson L, Ernerudh J, de Muinck E. Changes in natural killer and T lymphocyte phenotypes in response to cardiovascular risk management. Sci Rep 2023; 13:20810. [PMID: 38012327 PMCID: PMC10682417 DOI: 10.1038/s41598-023-48111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
The pro-inflammatory and regulatory roles of T lymphocytes in atherosclerosis are well established but less is known about natural killer (NK) cells and natural killer T (NKT)-like cells. The effects of cardiovascular risk management on the phenotypes of these cells are unknown. To assess changes in NK cell and lymphocyte phenotypes and circulating inflammatory proteins in response to cardiovascular risk management in patients with carotid atherosclerosis. Fifty patients were included in a prospective clinical study. Measurements were at baseline and after 12 months of cardiovascular risk management. Circulating NK, NKT-like and T lymphocyte subpopulations were phenotyped by multi-colour flow cytometry. Proximity extension assay was performed for 176 plasma proteins associated with inflammation and cardiovascular disease. At 12 months there were significant reductions in LDL (P = 0.001) and blood pressure (P = 0.028). NK cells responded with a reduction in pro-inflammatory (NKG2C+) cells (P = 0.0003), an increase in anti-inflammatory (NKG2A+) cells (P = 0.032), and a reduction in terminally differentiated (CD57+) NK cells. NKT-like cells showed a similar decrease in terminally differentiated subpopulations (P = 0.000002). Subpopulations of T helper cells exhibited a significant reduction in central memory (P = 1.09 × 10-8) and a significant increase in CD4+ naïve- (P = 0.0008) and effector memory T cells (P = 0.006). The protein analysis indicated that cardiovascular risk management affects proteins involved in the inflammatory NF-κB pathway. The consistent decrease in senescent phenotypes of NK, NKT-like and CD4+ cells with a concomitant increase in more naïve, phenotypes suggests a change towards a less pro-inflammatory lymphocyte profile in response to cardiovascular risk management.Trial registry name: CARotid MRI of Atherosclerosis (CARMA). ClinicalTrials.gov identifier NCT04835571 (08/04/2021). https://www.clinicaltrials.gov/study/NCT04835571 .
Collapse
Affiliation(s)
- Elin Good
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Linda Åkerman
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lena Jonasson
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ebo de Muinck
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Gunasena M, Alles M, Wijewantha Y, Mulhern W, Bowman E, Gabriel J, Kettelhut A, Kumar A, Weragalaarachchi K, Kasturiratna D, Horowitz JC, Scrape S, Pannu SR, Liu SL, Vilgelm A, Wijeratne S, Bednash JS, Demberg T, Funderburg NT, Liyanage NPM. Synergistic Role of NK Cells and Monocytes in Promoting Atherogenesis in Severe COVID-19 Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298322. [PMID: 37986806 PMCID: PMC10659469 DOI: 10.1101/2023.11.10.23298322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Clinical data demonstrate an increased predisposition to cardiovascular disease (CVD) following severe COVID-19 infection. This may be driven by a dysregulated immune response associated with severe disease. Monocytes and vascular tissue resident macrophages play a critical role in atherosclerosis, the main pathology leading to ischemic CVD. Natural killer (NK) cells are a heterogenous group of cells that are critical during viral pathogenesis and are known to be dysregulated during severe COVID-19 infection. Their role in atherosclerotic cardiovascular disease has recently been described. However, the contribution of their altered phenotypes to atherogenesis following severe COVID-19 infection is unknown. We demonstrate for the first time that during and after severe COVID-19, circulating proinflammatory monocytes and activated NK cells act synergistically to increase uptake of oxidized low-density lipoprotein (Ox-LDL) into vascular tissue with subsequent foam cell generation leading to atherogenesis despite recovery from acute infection. Our data provide new insights, revealing the roles of monocytes/macrophages, and NK cells in COVID-19-related atherogenesis.
Collapse
|
14
|
Alles M, Gunasena M, Kettelhut A, Ailstock K, Musiime V, Kityo C, Richardson B, Mulhern W, Tamilselvan B, Rubsamen M, Kasturiratna D, Demberg T, Cameron CM, Cameron MJ, Dirajlal-Fargo S, Funderburg NT, Liyanage NPM. Activated NK Cells with Pro-inflammatory Features are Associated with Atherogenesis in Perinatally HIV-Acquired Adolescents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23297580. [PMID: 37986784 PMCID: PMC10659511 DOI: 10.1101/2023.11.06.23297580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Human immunodeficiency virus (HIV) is associated with persistent immune activation and dysfunction in people with HIV despite treatment with antiretroviral therapy (ART). Modulation of the immune system may be driven by: low-level HIV replication, co-pathogens, gut dysbiosis /translocation, altered lipid profiles, and ART toxicities. In addition, perinatally acquired HIV (PHIV) and lifelong ART may alter the development and function of the immune system. Our preliminary data and published literature suggest reprogramming innate immune cells may accelerate aging and increase the risk for future end-organ complications, including cardiovascular disease (CVD). The exact mechanisms, however, are currently unknown. Natural killer (NK) cells are a highly heterogeneous cell population with divergent functions. They play a critical role in HIV transmission and disease progression in adults. Recent studies suggest the important role of NK cells in CVDs; however, little is known about NK cells and their role in HIV-associated cardiovascular risk in PHIV adolescents. Here, we investigated NK cell subsets and their potential role in atherogenesis in PHIV adolescents compared to HIV-negative adolescents in Uganda. Our data suggest, for the first time, that activated NK subsets in PHIV adolescents may contribute to atherogenesis by promoting plasma oxidized low-density lipoprotein (Ox-LDL) uptake by vascular macrophages.
Collapse
|
15
|
Zhang W, Zhang L, Zhu J, Xiao C, Cui H, Yang C, Yan P, Tang M, Wang Y, Chen L, Liu Y, Zou Y, Wu X, Zhang L, Yang C, Yao Y, Li J, Liu Z, Jiang X, Zhang B. Additional Evidence for the Relationship Between Type 2 Diabetes and Stroke Through Observational and Genetic Analyses. Diabetes 2023; 72:1671-1681. [PMID: 37552871 DOI: 10.2337/db22-0954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
While type 2 diabetes mellitus (T2DM) is commonly considered a putative causal risk factor for stroke, the effect of stroke on T2DM remains unclear. The intrinsic link underlying T2DM and stroke has not been thoroughly examined. We aimed to evaluate the phenotypic and genetic relationships underlying T2DM and stroke. We evaluated phenotypic associations using data from the UK Biobank (N = 472,050). We then investigated genetic relationships by leveraging genomic data in European ancestry for T2DM, with and without adjusting (adj) for BMI (T2DM: n = 74,124 case subjects/824,006 control subjects; T2DMadjBMI: n = 50,409 case subjects/523,897 control subjects), and for stroke (n = 73,652 case subjects/1,234,808 control subjects). We performed additional analyses using genomic data in East Asian ancestry for T2DM (n = 77,418 case subjects/356,122 control subjects) and for stroke (n = 27,413 case subjects/237,242 control subjects). Observational analyses suggested a significantly increased hazard of stroke among individuals with T2DM (hazard ratio 2.28 [95% CI 1.97-2.64]), but a slightly increased hazard of T2DM among individuals with stroke (1.22 [1.03-1.45]) which attenuated to 1.14 (0.96-1.36) in sensitivity analysis. A positive global T2DM-stroke genetic correlation was observed (rg = 0.35; P = 1.46 × 10-27), largely independent of BMI (T2DMadjBMI-stroke: rg = 0.27; P = 3.59 × 10-13). This was further corroborated by 38 shared independent loci and 161 shared expression-trait associations. Mendelian randomization analyses suggested a putative causal effect of T2DM on stroke in Europeans (odds ratio 1.07 [95% CI 1.06-1.09]), which remained significant in East Asians (1.03 [1.01-1.06]). Conversely, despite a putative causal effect of stroke on T2DM also observed in Europeans (1.21 [1.07-1.37]), it attenuated to 1.04 (0.91-1.19) in East Asians. Our study provides additional evidence to underscore the significant relationship between T2DM and stroke. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Jingwei Zhu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Chenghan Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Ling Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yuqin Yao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Zhenmi Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Popa-Fotea NM, Ferdoschi CE, Micheu MM. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front Cardiovasc Med 2023; 10:1200341. [PMID: 37600028 PMCID: PMC10434786 DOI: 10.3389/fcvm.2023.1200341] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis and its complications are a major cause of morbidity and mortality worldwide in spite of the improved medical and invasive treatment in terms of revascularization. Atherosclerosis is a dynamic, multi-step process in which inflammation is a ubiquitous component participating in the initiation, development, and entanglements of the atherosclerotic plaque. After activation, the immune system, either native or acquired, is part of the atherosclerotic dynamics enhancing the pro-atherogenic function of immune or non-immune cells, such as endothelial cells, smooth muscle cells, or platelets, through mediators such as cytokines or directly by cell-to-cell interaction. Cytokines are molecules secreted by the activated cells mentioned above that mediate the inflammatory component of atherosclerosis whose function is to stimulate the immune cells and the production of further cytokines. This review provides insights of the cell axis activation and specific mechanisms and pathways through which inflammation actuates atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital, Bucharest, Romania
| | - Corina-Elena Ferdoschi
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
| | | |
Collapse
|
17
|
Zhang Q, Liu H, Zhang M, Liu F, Liu T. Identification of co-expressed central genes and transcription factors in atherosclerosis-related intracranial aneurysm. Front Neurol 2023; 14:1055456. [PMID: 36937519 PMCID: PMC10017537 DOI: 10.3389/fneur.2023.1055456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Background Numerous clinical studies have shown that atherosclerosis is one of the risk factors for intracranial aneurysms. Calcifications in the intracranial aneurysm walls are frequently correlated with atherosclerosis. However, the pathogenesis of atherosclerosis-related intracranial aneurysms remains unclear. This study aims to investigate this mechanism. Methods The Gene Expression Omnibus (GEO) database was used to download the gene expression profiles for atherosclerosis (GSE100927) and intracranial aneurysms (GSE75436). Following the identification of the common differentially expressed genes (DEGs) of atherosclerosis and intracranial aneurysm, the network creation of protein interactions, functional annotation, the identification of hub genes, and co-expression analysis were conducted. Thereafter, we predicted the transcription factors (TF) of hub genes and verified their expressions. Results A total of 270 common (62 downregulated and 208 upregulated) DEGs were identified for subsequent analysis. Functional analyses highlighted the significant role of phagocytosis, cytotoxicity, and T-cell receptor signaling pathways in this disease progression. Eight hub genes were identified and verified, namely, CCR5, FCGR3A, IL10RA, ITGAX, LCP2, PTPRC, TLR2, and TYROBP. Two TFs were also predicted and verified, which were IKZF1 and SPI1. Conclusion Intracranial aneurysms are correlated with atherosclerosis. We identified several hub genes for atherosclerosis-related intracranial aneurysms and explored the underlying pathogenesis. These discoveries may provide new insights for future experiments and clinical practice.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hengfang Liu
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Hengfang Liu
| | - Min Zhang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Liu
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tiantian Liu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
19
|
Zieleniewska NA, Kazberuk M, Chlabicz M, Eljaszewicz A, Kamiński K. Trained Immunity as a Trigger for Atherosclerotic Cardiovascular Disease-A Literature Review. J Clin Med 2022; 11:jcm11123369. [PMID: 35743439 PMCID: PMC9224533 DOI: 10.3390/jcm11123369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis remains the leading cause of cardiovascular diseases and represents a primary public health challenge. This chronic state may lead to a number of life-threatening conditions, such as myocardial infarction and stroke. Lipid metabolism alterations and inflammation remain at the forefront of the pathogenesis of atherosclerotic cardiovascular disease, but the overall mechanism is not yet fully understood. Recently, significant effects of trained immunity on atherosclerotic plaque formation and development have been reported. An increased reaction to restimulation with the same stimulator is a hallmark of the trained innate immune response. The impact of trained immunity is a prominent factor in both acute and chronic coronary syndrome, which we outline in this review.
Collapse
Affiliation(s)
- Natalia Anna Zieleniewska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Małgorzata Kazberuk
- Scientific Group of Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Małgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Invasive Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
- Correspondence:
| |
Collapse
|
20
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 500] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
21
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
22
|
Murphy JM, Ngai L, Mortha A, Crome SQ. Tissue-Dependent Adaptations and Functions of Innate Lymphoid Cells. Front Immunol 2022; 13:836999. [PMID: 35359972 PMCID: PMC8960279 DOI: 10.3389/fimmu.2022.836999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident immune cells reside in distinct niches across organs, where they contribute to tissue homeostasis and rapidly respond to perturbations in the local microenvironment. Innate lymphoid cells (ILCs) are a family of innate immune cells that regulate immune and tissue homeostasis. Across anatomical locations throughout the body, ILCs adopt tissue-specific fates, differing from circulating ILC populations. Adaptations of ILCs to microenvironmental changes have been documented in several inflammatory contexts, including obesity, asthma, and inflammatory bowel disease. While our understanding of ILC functions within tissues have predominantly been based on mouse studies, development of advanced single cell platforms to study tissue-resident ILCs in humans and emerging patient-based data is providing new insights into this lymphocyte family. Within this review, we discuss current concepts of ILC fate and function, exploring tissue-specific functions of ILCs and their contribution to health and disease across organ systems.
Collapse
Affiliation(s)
- Julia M. Murphy
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
Palano MT, Cucchiara M, Gallazzi M, Riccio F, Mortara L, Gensini GF, Spinetti G, Ambrosio G, Bruno A. When a Friend Becomes Your Enemy: Natural Killer Cells in Atherosclerosis and Atherosclerosis-Associated Risk Factors. Front Immunol 2022; 12:798155. [PMID: 35095876 PMCID: PMC8793801 DOI: 10.3389/fimmu.2021.798155] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis (ATS), the change in structure and function of arteries with associated lesion formation and altered blood flow, is the leading cause of cardiovascular disease, the number one killer worldwide. Beyond dyslipidemia, chronic inflammation, together with aberrant phenotype and function of cells of both the innate and adaptive immune system, are now recognized as relevant contributors to atherosclerosis onset and progression. While the role of macrophages and T cells in atherosclerosis has been addressed in several studies, Natural Killer cells (NKs) represent a poorly explored immune cell type, that deserves attention, due to NKs’ emerging contribution to vascular homeostasis. Furthermore, the possibility to re-polarize the immune system has emerged as a relevant tool to design new therapies, with some succesfull exmples in the field of cancer immunotherapy. Thus, a deeper knowledge of NK cell pathophysiology in the context of atherosclerosis and atherosclerosis-associated risk factors could help developing new preventive and treatment strategies, and decipher the complex scenario/history from “the risk factors for atherosclerosis” Here, we review the current knowledge about NK cell phenotype and activities in atherosclerosis and selected atherosclerosis risk factors, namely type-2 diabetes and obesity, and discuss the related NK-cell oriented environmental signals.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gian Franco Gensini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | | | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| |
Collapse
|
24
|
Perera Molligoda Arachchige AS. Human NK cells: From development to effector functions. Innate Immun 2021; 27:212-229. [PMID: 33761782 PMCID: PMC8054151 DOI: 10.1177/17534259211001512] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.
Collapse
|
25
|
Chu R, van Eeden C, Suresh S, Sligl WI, Osman M, Cohen Tervaert JW. Do COVID-19 Infections Result in a Different Form of Secondary Hemophagocytic Lymphohistiocytosis. Int J Mol Sci 2021; 22:2967. [PMID: 33803997 PMCID: PMC8001312 DOI: 10.3390/ijms22062967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant morbidity and mortality across the world, with no current effective treatments available. Recent studies suggest the possibility of a cytokine storm associated with severe COVID-19, similar to the biochemical profile seen in hemophagocytic lymphohistiocytosis (HLH), raising the question of possible benefits that could be derived from targeted immunosuppression in severe COVID-19 patients. We reviewed the literature regarding the diagnosis and features of HLH, particularly secondary HLH, and aimed to identify gaps in the literature to truly clarify the existence of a COVID-19 associated HLH. Diagnostic criteria such as HScore or HLH-2004 may have suboptimal performance in identifying COVID-19 HLH-like presentations, and criteria such as soluble CD163, NK cell activity, or other novel biomarkers may be more useful in identifying this entity.
Collapse
Affiliation(s)
- Raymond Chu
- Division of Rheumatology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 7W9, Canada;
| | - Charmaine van Eeden
- Division of Rheumatology, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (M.O.)
| | - Sneha Suresh
- Division of IHOPE, Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Wendy I. Sligl
- Department of Critical Care Medicine and Division of Infectious Diseases, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (M.O.)
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (M.O.)
| |
Collapse
|
26
|
De Pasquale C, Campana S, Bonaccorsi I, Carrega P, Ferlazzo G. ILC in chronic inflammation, cancer and targeting with biologicals. Mol Aspects Med 2021; 80:100963. [PMID: 33726947 DOI: 10.1016/j.mam.2021.100963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/11/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Since their discovery, Innate Lymphoid Cells (ILC) have emerged as important effector cells, serving multiple roles in maintaining tissue homeostasis and responding to tissue insults. As such, dysregulations of their function and distribution have been observed in a variety of immune-mediated diseases, suggesting a specific role for ILC in the pathophysiology of several disorders including chronic inflammation and cancer. Here, we provide an updated view on ILC biology dissecting their pathological or protective contribution in chronic inflammatory diseases such as multiple sclerosis, inflammatory bowel diseases, psoriasis, rheumatoid arthritis, asthma and COPD, atherosclerosis, also exploring ILC role in tumor surveillance and progression. Throughout the review, we will also highlight how the potential dual role of these cells for protective or pathogenic immunity in many inflammatory diseases makes them interesting targets for the development of novel therapeutic strategies, particularly promising.
Collapse
Affiliation(s)
- Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy; Cell Factory Center and Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy; Cell Factory Center and Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy.
| |
Collapse
|
27
|
Choi IS, Lee MJ, Choi SA, Choi KS, Jeong IS, Cho HJ. Circulating Immune Cell Profile and Changes in Intravenous Immunoglobulin Responsiveness Over the Disease Course in Children With Kawasaki Disease. Front Pediatr 2021; 9:792870. [PMID: 35186822 PMCID: PMC8855096 DOI: 10.3389/fped.2021.792870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
Kawasaki disease (KD) is an acute, self-limited febrile illness of young children. The etiology of KD remains to be poorly understood. There has been limited research on longitudinal examination of peripheral blood leukocytes for immune profiling particularly in relation to treatment response with intravenous immunoglobulin (IVIG). This study profiles immune cells at the time of diagnosis and over the disease course. In addition, we identified the characteristics of the immune cells in IVIG-responsive patients with KD. We enrolled patients diagnosed with KD between May 1, 2017, and January 1, 2020. Blood was taken at least three times from all enrolled patients: at diagnosis (before IVIG infusion) and immediately and 2 weeks after IVIG infusion. We evaluated the laboratory findings and results of flow cytometry analysis of immune cells at all stages, focusing on CD4+ T lymphocytes, CD8+ T lymphocytes, CD19+ B lymphocytes, granulocytes, classical monocytes, and natural killer (NK) cells. Non-febrile healthy controls (NFCs) and other febrile controls (OFCs) were also enrolled. A total of 68 patients were enrolled and divided into two groups according to IVIG resistance status: IVIG-responsive (n = 55) and IVIG-resistant (n = 13). The total fever duration was significantly longer in the IVIG-resistant group (9.7 ± 5.3 days) than in the IVIG-responsive group (6.7 ± 3.0 days; P = 0.02). There was a significant difference in intermediate CD14+CD16+ monocytes between KD patients and both NFC and OFCs; they were significantly higher and lower in KD patients than NFC and OFCs, respectively (P < 0.001). The levels of all three subtypes of NK cells were significantly lower in KD patients than in both NFC and OFCs (P < 0.001). Regarding IVIG responsiveness, CD14+CD16+ intermediate monocyte levels were significantly lower in the IVIG-resistant group (P < 0.001). In addition, CD56-CD16+ NK cell expression was significantly lower in the IVIG-resistant group than in the IVIG-responsive group (P = 0.002). In conclusion, our results suggest CD56-CD16+N NK cells and CD14+CD16+ intermediate monocytes might play an essential role in immunopathogenesis of KD. Further studies are warranted to explore the role of these subpopulations particularly for the observed association with coronary artery lesions (CAL) and treatment response.
Collapse
Affiliation(s)
- In Su Choi
- Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, South Korea
| | - Mi Ji Lee
- Department of Pediatrics, Miz-I Hospital, Mokpo-si, South Korea
| | - Seul A Choi
- Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, South Korea
| | - Kyung Soon Choi
- Department of Cardiothoracic Surgery, Chonnam National University Hospital and Medical School, Gwangju, South Korea
| | - In Seok Jeong
- Department of Cardiothoracic Surgery, Chonnam National University Hospital and Medical School, Gwangju, South Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, South Korea
| |
Collapse
|
28
|
Nettersheim FS, De Vore L, Winkels H. Vaccination in Atherosclerosis. Cells 2020; 9:cells9122560. [PMID: 33266027 PMCID: PMC7760548 DOI: 10.3390/cells9122560] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is the major underlying pathology of cardiovascular diseases that together are the leading cause of death worldwide. The formation of atherosclerotic plaques is driven by chronic vascular inflammation. Although several risk factors have been identified and significant progress in disease prevention and treatment has been made, no therapeutic agents targeting inflammation are clinically available. Recent clinical trials established the potential of anti-inflammatory therapies as a treatment of atherosclerosis. However, adverse impacts on host defense have raised safety concerns about these therapies. Scientific evidence during the past 40 years implicated an adaptive immune response against plaque-associated autoantigens in atherogenesis. Preclinical data have underscored the protective potential of immunization against such targets precisely and without the impairment of host defense. In this review, we discuss the current vaccination strategies against atherosclerosis, supposed mechanisms of action, therapeutic potential, and the challenges that must be overcome in translating this idea into clinical practice.
Collapse
|
29
|
Flores-Gomez D, Bekkering S, Netea MG, Riksen NP. Trained Immunity in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 41:62-69. [PMID: 33147995 DOI: 10.1161/atvbaha.120.314216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is characterized by incessant inflammation in the arterial wall in which monocytes and macrophages play a crucial role. During the past few years, it has been reported that cells from the innate immune system can develop a long-lasting proinflammatory phenotype after brief stimulation not only with microbial products but also endogenous atherogenic stimuli. This persistent hyperactivation of the innate immune system is termed trained immunity and can contribute to the pathophysiology of atherosclerosis. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs both in mature innate immune cells as well as their bone marrow progenitors. In addition to monocytes, other innate immune and nonimmune cells involved in different stages of atherosclerosis can develop comparable memory characteristics. This mechanism provides exciting novel pharmacological targets that can be used to prevent or treat cardiovascular diseases.
Collapse
Affiliation(s)
- Daniela Flores-Gomez
- Department of Internal Medicine and Radboud Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (D.F.-G., S.B., M.G.N., N.P.R.)
| | - Siroon Bekkering
- Department of Internal Medicine and Radboud Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (D.F.-G., S.B., M.G.N., N.P.R.)
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (D.F.-G., S.B., M.G.N., N.P.R.).,Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Germany (M.G.N.)
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (D.F.-G., S.B., M.G.N., N.P.R.)
| |
Collapse
|
30
|
Kumrić M, Tičinović Kurir T, Borovac JA, Božić J. The Role of Natural Killer (NK) Cells in Acute Coronary Syndrome: A Comprehensive Review. Biomolecules 2020; 10:E1514. [PMID: 33167533 PMCID: PMC7694449 DOI: 10.3390/biom10111514] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
With poor outcomes and an immense financial burden, acute coronary syndrome (ACS) and its ischemic repercussions still present a major global health problem. Unfavorable outcomes seem to be mainly due to adverse cardiac remodeling. Since the inflammatory response takes an important role in remodeling secondary to myocardial infarction (MI), and as inflammation in this manner has not been completely elucidated, we attempted to give rise to a further understanding of ACS pathophysiology. Hence, in this review, we integrated current knowledge of complex communication networks between natural killer (NK) cells and immune and resident heart cells in the context of ACS. Based on available data, the role of NK cells seems to be important in the infarcted myocardium, where it affects heart remodeling. On the other hand, in atherosclerotic plaque, NK cells seem to be mere passers-by, except in the case of chronic infections by atherogenic pathogens. In that case, NK cells seem to support proinflammatory milieu. NK cell research is challenging due to ethical reasons, convergent evolution, and phenotypic diversity among individuals. Therefore, we argue that further research of NK cells in ACS is valuable, given their therapeutic potential in improving postischemic heart remodeling.
Collapse
Affiliation(s)
- Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
| | - Tina Tičinović Kurir
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
- Endocrinology Clinic, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Josip A. Borovac
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
- Institute of Emergency Medicine of Split-Dalmatia County (ZHM SDZ), Spinčićeva 1, 21000 Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
| |
Collapse
|
31
|
Gong X, Xia L, Su Z. Friend or foe of innate lymphoid cells in inflammation-associated cardiovascular disease. Immunology 2020; 162:368-376. [PMID: 32967038 DOI: 10.1111/imm.13271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
As a distinctive population of leucocytes, innate lymphoid cells (ILCs) participate in immune-mediated diseases and play crucial roles in tissue remodelling after injury. ILC lineages can be divided into helper ILCs and cytotoxic ILCs. Most helper ILCs are integrated into the fabric of tissues and produce different types of cytokines involving in the pathogenesis of many kinds of cardiovascular disease and form intricate response circuits with adaptive immune cells. However, the specific phenotype and function of helper ILC subsets in cardiovascular diseases are still poorly understood. In this review, we firstly highlight the distribution of helper ILCs in cardiovascular system and further discuss the potential contribution of helper ILCs in inflammation-associated cardiovascular disease.
Collapse
Affiliation(s)
- Xiangmei Gong
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci 2020; 21:E6351. [PMID: 32883007 PMCID: PMC7503862 DOI: 10.3390/ijms21176351] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
When facing an acute viral infection, our immune systems need to function with finite precision to enable the elimination of the pathogen, whilst protecting our bodies from immune-related damage. In many instances however this "perfect balance" is not achieved, factors such as ageing, cancer, autoimmunity and cardiovascular disease all skew the immune response which is then further distorted by viral infection. In SARS-CoV-2, although the vast majority of COVID-19 cases are mild, as of 24 August 2020, over 800,000 people have died, many from the severe inflammatory cytokine release resulting in extreme clinical manifestations such as acute respiratory distress syndrome (ARDS) and hemophagocytic lymphohistiocytosis (HLH). Severe complications are more common in elderly patients and patients with cardiovascular diseases. Natural killer (NK) cells play a critical role in modulating the immune response and in both of these patient groups, NK cell effector functions are blunted. Preliminary studies in COVID-19 patients with severe disease suggests a reduction in NK cell number and function, resulting in decreased clearance of infected and activated cells, and unchecked elevation of tissue-damaging inflammation markers. SARS-CoV-2 infection skews the immune response towards an overwhelmingly inflammatory phenotype. Restoration of NK cell effector functions has the potential to correct the delicate immune balance required to effectively overcome SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Jan Willem Cohen Tervaert
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (L.K.); (M.S.O.)
| |
Collapse
|
33
|
Burns JC, Hsieh LE, Kumar J, Behnamfar N, Shimizu C, Sivilay N, Tremoulet AH, Franco A. Characterization of circulating immune cells in acute Kawasaki disease suggests exposure to different antigens. Clin Exp Immunol 2020; 202:263-272. [PMID: 32812215 PMCID: PMC7670149 DOI: 10.1111/cei.13506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023] Open
Abstract
Kawasaki disease (KD) is an acute pediatric vasculitis of unknown etiology that can cause coronary artery aneurysms, and is the leading cause of acquired heart disease in children. We studied aspects of the innate and adaptive immune response in 17 acute KD children prior to treatment with intravenous immunoglobulin. Distinct patterns within the innate immune response correlated with specific clinical features. Proinflammatory myeloid dendritic cells (mDC) were abundant in four of 17 (23·5%) subjects who were older and manifested severe inflammation with clinical myocarditis and elevated hepatobiliary enzyme levels. Of the nine subjects with low levels of anti‐inflammatory, tolerogenic mDC, six had enlarged cervical lymph nodes at diagnosis. In contrast, the adaptive immune repertoire varied greatly with no discernible patterns or associations with clinical features. Two subjects with aneurysms had numerous circulating CD8+ T cells. Ten subjects showed low CD4+ T cell numbers and seven subjects had CD4+ T cells in the normal range. CD4+ T cells expressed interleukin‐7 receptor (IL‐7R), suggesting repeated antigenic stimulation. Thymic‐derived regulatory T cells (nTreg) and peripherally induced regulatory T cells (iTreg) were also enumerated, with the majority having the nTreg phenotype. Natural killer (NK) and NK T cell numbers were similar across all subjects. Taken together, the results of the immune monitoring suggest that KD may have multiple triggers that stimulate different arms of the innate and adaptive compartment in KD patients. Thus, it is possible that diverse antigens may participate in the pathogenesis of KD.
Collapse
Affiliation(s)
- J C Burns
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - L E Hsieh
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - J Kumar
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - N Behnamfar
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - C Shimizu
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - N Sivilay
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - A H Tremoulet
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - A Franco
- School of Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Elyasi A, Voloshyna I, Ahmed S, Kasselman LJ, Behbodikhah J, De Leon J, Reiss AB. The role of interferon-γ in cardiovascular disease: an update. Inflamm Res 2020; 69:975-988. [PMID: 32699989 DOI: 10.1007/s00011-020-01382-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death, globally, and its prevalence is only expected to rise due to the increasing incidence of co-morbidities such as obesity and diabetes. Medical treatment of CVD is directed primarily at slowing or reversing the underlying atherosclerotic process by managing circulating lipids with an emphasis on control of low-density lipoprotein (LDL) cholesterol. However, over the past several decades, there has been increasing recognition that chronic inflammation and immune system activation are important contributors to atherosclerosis. This shift in focus has led to the elucidation of the complex interplay between cholesterol and cellular secretion of cytokines involved in CVD pathogenesis. Of the vast array of cytokine promoting atherosclerosis, interferon (IFN)-γ is highly implicated and, therefore, of great interest. METHODS Literature review was performed to further understand the effect of IFN-γ on the development of atherosclerotic CVD. RESULTS IFN-γ, the sole member of the type II IFN family, is produced by T cells and macrophages, and has been found to induce production of other cytokines and to have multiple effects on all stages of atherogenesis. IFN-γ activates a variety of signaling pathways, most commonly the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, to induce oxidative stress, promote foam cell accumulation, stimulate smooth muscle cell proliferation and migration into the arterial intima, enhance platelet-derived growth factor expression, and destabilize plaque. These are just a few of the contributions of IFN-γ to the initiation and progression of atherosclerotic CVD. CONCLUSION Given the pivotal role of IFN-γ in the advancement of CVD, activation of its signaling pathways is being explored as a driver of atherosclerosis. Manipulation of this key cytokine may lead to novel therapeutic avenues for CVD prevention and treatment. A number of therapies are being explored with IFN-γ as the potential target.
Collapse
Affiliation(s)
- Ailin Elyasi
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Iryna Voloshyna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Saba Ahmed
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Lora J Kasselman
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Jennifer Behbodikhah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA.
| |
Collapse
|
35
|
Utay NS, Vigil KJ, Somasunderam A, Aulicino PC, Smulevitz B, Chiadika S, Wolf DS, Kimata JT, Arduino RC. Timing of Antiretroviral Therapy Initiation Determines Rectal Natural Killer Cell Populations. AIDS Res Hum Retroviruses 2020; 36:314-323. [PMID: 31838858 DOI: 10.1089/aid.2019.0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite antiretroviral therapy (ART), innate and adaptive immunologic damage persists in the periphery and gut. T memory stem cells (Tscm) and natural killer (NK) cells are pivotal for host defense. Tscm are memory cells capable of antigen response and self-renewal, and circulating and gut NK cell populations may facilitate HIV control. The impact of early ART on circulating and gut Tscm and NK cells is unknown. We enrolled participants who initiated ART during acute versus chronic HIV-1 infection versus no ART in chronic infection. We performed flow cytometry to identify NK and Tscm cells in the blood and rectum and polymerase chain reaction to quantify the HIV-1 reservoir in both sites. We used the Mann-Whitney U-test and Spearman correlation coefficients for analysis. Participants who started ART in acute infection had lower rectal CD56brightCD16dim cell frequencies than participants who started ART in chronic HIV-1 infection and lower CD56bright and CD56brightCD16- cell frequencies than participants with chronic infection without ART. Higher circulating NK cell, CD56-CD16bright, CD56dim, and CD56dimCD16bright frequencies correlated with higher HIV-1 DNA levels in rectal CD4+ T cells, whereas higher circulating CD4+ T cell counts correlated with higher rectal NK, CD56brightCD16dim, and CD56dimCD16bright frequencies. Peripheral CD56brightCD16- cells were inversely associated with rectal CD56-CD16bright cells. Rectal CD8+ Tscm frequencies were higher in participants without ART than participants with chronic infection on ART. Timing of ART initiation determines rectal NK cell populations, and ART may influence rectal Tscm populations. Whether the gut reservoir contributes to NK cell activation requires further study.
Collapse
Affiliation(s)
- Netanya S. Utay
- Division of General Medicine, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Karen J. Vigil
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Anoma Somasunderam
- Division of General Medicine, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Paula C. Aulicino
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría “Juan P. Garrahan”-CONICET, Buenos Aires, Argentina
| | - Beverly Smulevitz
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Simbo Chiadika
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Roberto C. Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| |
Collapse
|