1
|
Wiendl H, Barkhof F, Montalban X, Achiron A, Derfuss T, Chan A, Hodgkinson S, Prat A, Leocani L, Schmierer K, Sellebjerg F, Vermersch P, Jin H, Chudecka A, Kloetgen A, Lin D, Gardner L, De Stefano N. Blood biomarker dynamics in people with relapsing multiple sclerosis treated with cladribine tablets: results of the 2-year MAGNIFY-MS study. Front Immunol 2025; 16:1512189. [PMID: 39963134 PMCID: PMC11830603 DOI: 10.3389/fimmu.2025.1512189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
Background and objectives Cladribine tablets (CladT) represent an effective immune reconstitution therapy, administered in short treatment courses over two consecutive years. To better understand the amplitude of immune changes, we performed a comprehensive analysis during the 2-year study period for the entire MAGNIFY-MS population (N=270). In addition to lymphocyte kinetics, we studied intracellular cytokines serum proteins, and their associations with clinical outcomes. To put these changes into perspective, we analyzed transcriptional changes in T and B cells and associated biological pathways before and after each treatment course with CladT. Methods Immunophenotyping and transcriptomics were performed at regular visits with major differences reported between baseline (BL) and after each yearly treatment course. Assessments included: lymphocyte dynamics, RNA sequencing (B and T cells), intracellular cytokines, serum proteins (immunoglobulins [IgG and IgM], and serum neurofilament light chain [sNfL]). Clinical measures included: MRI activity, annualized relapse rate (ARR), 6-month confirmed disability progression (6mCDP), timed 25-foot walk (T25FW), and 9-hole peg test (9HPT). Results All B, T and NK cells were reduced at month (M)3 after CladT administration, except regulatory B cells which increased above BL from M3 to M24. Naïve and transitional B cells recovered at M6; all other B and T cell subsets remained below BL levels. Reductions in all NK cell subtypes were observed at M3, CD16lowCD56bright and NKp46 cells reconstituted at M6 and M12 respectively. Changes in genes and pathways associated with innate and adaptive immune response were observed after CladT treatment, along with reductions in pro-inflammatory cytokine-producing B and T cells and increases in anti-inflammatory cytokine-producing T cells. IgG and IgM levels remained above the lower limits of normal in most participants. sNfL levels decreased, remaining reduced by M24. Significant reductions in the annualized combined unique active lesion count occurred from M2 onwards. ARR was 0.11 (95% confidence interval: 0.09,0.15), with 83% participants free of qualifying relapses. Over 90% of participants were free of 6mCDP, around 87% had no confirmed progression on T25FW and 9HPT. No significant correlations were seen between clinical parameters and lymphocyte dynamics to M6. The safety profile was consistent with previous reports. Discussion Deep longitudinal immunophenotyping, analysis of transcriptional changes, reduction in cells expressing pro-inflammatory cytokines, along with the marker of neuroaxonal damage provide novel and innovative evidence of CladT rebalancing the immune system towards a more homeostatic and less pathogenic state. Clinical Trial Registration https://clinicaltrials.gov/study/, identifier NCT03364036.
Collapse
Affiliation(s)
- Heinz Wiendl
- Department of Neurology, Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d’Hebron, Barcelona, Spain
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Academic Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tobias Derfuss
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Suzanne Hodgkinson
- Ingham Institute for Applied Medical Research, University of New South Wales Medicine and Liverpool Hospital, Sydney, NSW, Australia
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Letizia Leocani
- Department of Neurology, University Vita-Salute San Raffaele, Milan, Italy
- Experimental Neurophysiology Unit, Scientific Institute IRCCS San Raffaele, Milan, Italy
- Department of Neurorehabilitation Science, Casa di Cura Igea, Milan, Italy
| | - Klaus Schmierer
- The Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS, Trust, London, United Kingdom
| | - Finn Sellebjerg
- Danish MS Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Vermersch
- Univ. Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Hulin Jin
- Clinical Measurement Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | - Anita Chudecka
- Clinical Research Services, Cytel Inc., Geneva, Switzerland
| | - Andreas Kloetgen
- Clinical Measurement Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | - Dongdong Lin
- Clinical Measurement Sciences, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, United States
| | - Lidia Gardner
- Neurology & Immunology Medical Unit, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, United States
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Pei X, Ma S, Hong L, Zuo Z, Xu G, Chen C, Shen Y, Liu D, Li C, Li D. Molecular insights of T-2 toxin exposure-induced neurotoxicity and the neuroprotective effect of dimethyl fumarate. Food Chem Toxicol 2025; 196:115166. [PMID: 39617286 DOI: 10.1016/j.fct.2024.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
T-2 toxin, a potent environmental pollutant, has been proved to stimulate neuroinflammation, while the connection between T-2 toxin and pyroptosis remain elusive. Dimethyl fumarate (DMF), recently identified as a neuroprotectant and pyroptosis inhibitor, has potential therapeutic applications that are underexplored. Based on present study in vitro and vivo, we demonstrated that T-2 toxin induced the activation of NLRP3-Caspase-1 inflammasome in hippocampal neurons. In addition to proinflammatory mediator overexpression, gasdermin D (GSDMD)-dependently pyroptosis in the mouse hippocampal neuron cell line (HT22) treated by T-2 toxin was determined in our study. Moreover, the palliative effect of knockdown sequence of high mobility group B1 protein (HMGB1) provided more details for T-2 toxin-initiated pyroptosis. Importantly, we confirmed that DMF, as a novel inhibitor of GSDMD, could alleviate pyroptosis induced by T-2 toxin in an GSDMD targeting manner. In summary, our studies exposed the evidence that T-2 toxin could induce NLRP3 inflammasome activation and hippocampal neuronal pyroptosis. More notably, DMF was turn out to be a critical executioner for attenuating GSDMD-mediated pyroptosis. Our data found a new function of DMF and suggested a novel therapy strategy against mycotoxin-triggered neuronal inflammation, which leads to varieties of neurological diseases.
Collapse
Affiliation(s)
- Xingyao Pei
- Open Fund of Key Laboratory of Smart Breeding (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Shuhui Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Chun Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Yao Shen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Open Fund of Key Laboratory of Smart Breeding (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China.
| |
Collapse
|
3
|
Molina Galindo LS, Gonzalez-Escamilla G, Fleischer V, Grotegerd D, Meinert S, Ciolac D, Person M, Stein F, Brosch K, Nenadić I, Alexander N, Kircher T, Hahn T, Winter Y, Othman AE, Bittner S, Zipp F, Dannlowski U, Groppa S. Concurrent inflammation-related brain reorganization in multiple sclerosis and depression. Brain Behav Immun 2024; 119:978-988. [PMID: 38761819 DOI: 10.1016/j.bbi.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Neuroinflammation affects brain tissue integrity in multiple sclerosis (MS) and may have a role in major depressive disorder (MDD). Whether advanced magnetic resonance imaging characteristics of the gray-to-white matter border serve as proxy of neuroinflammatory activity in MDD and MS remain unknown. METHODS We included 684 participants (132 MDD patients with recurrent depressive episodes (RDE), 70 MDD patients with a single depressive episode (SDE), 222 MS patients without depressive symptoms (nMS), 58 MS patients with depressive symptoms (dMS), and 202 healthy controls (HC)). 3 T-T1w MRI-derived gray-to-white matter contrast (GWc) was used to reconstruct and characterize connectivity alterations of GWc-covariance networks by means of modularity, clustering coefficient, and degree. A cross-validated support vector machine was used to test the ability of GWc to stratify groups according to their depression symptoms, measured with BDI, at the single-subject level in MS and MDD independently. FINDINGS MS and MDD patients showed increased modularity (ANOVA partial-η2 = 0.3) and clustering (partial-η2 = 0.1) compared to HC. In the subgroups, a linear trend analysis attested a gradient of modularity increases in the form: HC, dMS, nMS, SDE, and RDE (ANOVA partial-η2 = 0.28, p < 0.001) while this trend was less evident for clustering coefficient. Reduced morphological integrity (GWc) was seen in patients with increased depressive symptoms (partial-η2 = 0.42, P < 0.001) and was associated with depression scores across patient groups (r = -0.2, P < 0.001). Depressive symptoms in MS were robustly classified (88 %). CONCLUSIONS Similar structural network alterations in MDD and MS exist, suggesting possible common inflammatory events like demyelination, neuroinflammation that are caught by GWc analyses. These alterations may vary depending on the severity of symptoms and in the case of MS may elucidate the occurrence of comorbid depression.
Collapse
Affiliation(s)
- Lara S Molina Galindo
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maren Person
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frederike Stein
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Katharina Brosch
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Igor Nenadić
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Nina Alexander
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tilo Kircher
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Yaroslav Winter
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
4
|
Chen Z, Huang Y, Wang B, Peng H, Wang X, Wu H, Chen W, Wang M. T cells: an emerging cast of roles in bipolar disorder. Transl Psychiatry 2023; 13:153. [PMID: 37156764 PMCID: PMC10167236 DOI: 10.1038/s41398-023-02445-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Bipolar disorder (BD) is a distinctly heterogeneous and multifactorial disorder with a high individual and social burden. Immune pathway dysregulation is an important pathophysiological feature of BD. Recent studies have suggested a potential role for T lymphocytes in the pathogenesis of BD. Therefore, greater insight into T lymphocytes' functioning in patients with BD is essential. In this narrative review, we describe the presence of an imbalance in the ratio and altered function of T lymphocyte subsets in BD patients, mainly in T helper (Th) 1, Th2, Th17 cells and regulatory T cells, and alterations in hormones, intracellular signaling, and microbiomes may be potential causes. Abnormal T cell presence explains the elevated rates of comorbid inflammatory illnesses in the BD population. We also update the findings on T cell-targeting drugs as potentially immunomodulatory therapeutic agents for BD disease in addition to classical mood stabilizers (lithium, valproic acid). In conclusion, an imbalance in T lymphocyte subpopulation ratios and altered function may be involved in the development of BD, and maintaining T cell immune homeostasis may provide an overall therapeutic benefit.
Collapse
Affiliation(s)
- Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Ciolac D, Gonzalez-Escamilla G, Winter Y, Melzer N, Luessi F, Radetz A, Fleischer V, Groppa SA, Kirsch M, Bittner S, Zipp F, Muthuraman M, Meuth SG, Grothe M, Groppa S. Altered grey matter integrity and network vulnerability relate to epilepsy occurrence in patients with multiple sclerosis. Eur J Neurol 2022; 29:2309-2320. [PMID: 35582936 DOI: 10.1111/ene.15405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND To investigate the relevance of compartmentalized grey matter (GM) pathology and network reorganization in MS patients with concomitant epilepsy. METHODS From 3T MRI scans of 30 MS patients with epilepsy (MSE; age 41±15 years, 21 females, disease duration 8±6 years, median Expanded Disability Status Scale (EDSS) 3), 60 MS patients without epilepsy (MS; age 41±12 years, 35 females, disease duration 6±4 years, EDSS 2), and 60 healthy subjects (HS; age 40±13 years, 27 females) regional volumes of GM lesions and of cortical, subcortical, and hippocampal structures were quantified. Network topology and vulnerability were modeled within the graph theoretical framework. The receiver operating characteristic (ROC) analysis was applied to assess the accuracy of GM pathology measures to discriminate between MSE and MS patients. RESULTS Higher lesion volumes within the hippocampus, mesiotemporal cortex, and amygdala were detected in MSE compared to MS (all p<0.05). MSE displayed lower cortical volumes mainly in temporal and parietal areas compared to MS and HS (all p<0.05). Lower volumes of hippocampal tail and presubiculum were identified in both MSE and MS patients compared to HS (all p<0.05). Network topology in MSE was characterized by higher transitivity and assortativity, and higher vulnerability compared to MS and HS (all p<0.05). Hippocampal lesion volume yielded the highest accuracy (area under the ROC curve 0.80 [0.67-0.91]) in discriminating between MSE and MS patients. CONCLUSIONS High lesion load, altered integrity of mesiotemporal GM structures, and network reorganization are associated with a greater propensity of epilepsy occurrence in MS.
Collapse
Affiliation(s)
- Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Yaroslav Winter
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Angela Radetz
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stanislav A Groppa
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Michael Kirsch
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine of Greifswald, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O. Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help? Brain Commun 2021; 3:fcab237. [PMID: 34729480 PMCID: PMC8557667 DOI: 10.1093/braincomms/fcab237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory demyelination characterizes the initial stages of multiple sclerosis, while progressive axonal and neuronal loss are coexisting and significantly contribute to the long-term physical and cognitive impairment. There is an unmet need for a conceptual shift from a dualistic view of multiple sclerosis pathology, involving either inflammatory demyelination or neurodegeneration, to integrative dynamic models of brain reorganization, where, glia-neuron interactions, synaptic alterations and grey matter pathology are longitudinally envisaged at the whole-brain level. Functional and structural MRI can delineate network hallmarks for relapses, remissions or disease progression, which can be linked to the pathophysiology behind inflammatory attacks, repair and neurodegeneration. Here, we aim to unify recent findings of grey matter circuits dynamics in multiple sclerosis within the framework of molecular and pathophysiological hallmarks combined with disease-related network reorganization, while highlighting advances from animal models (in vivo and ex vivo) and human clinical data (imaging and histological). We propose that MRI-based brain networks characterization is essential for better delineating ongoing pathology and elaboration of particular mechanisms that may serve for accurate modelling and prediction of disease courses throughout disease stages.
Collapse
Affiliation(s)
- Sergiu Groppa
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Gabriel Gonzalez-Escamilla
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Arman Eshaghi
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK.,Department of Computer Science, Centre for Medical Image Computing (CMIC), University College London, London WC1E 6BT, UK
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Ciolac D, Gonzalez-Escamilla G, Radetz A, Fleischer V, Person M, Johnen A, Landmeyer NC, Krämer J, Muthuraman M, Meuth SG, Groppa S. Sex-specific signatures of intrinsic hippocampal networks and regional integrity underlying cognitive status in multiple sclerosis. Brain Commun 2021; 3:fcab198. [PMID: 34514402 PMCID: PMC8417841 DOI: 10.1093/braincomms/fcab198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
The hippocampus is an anatomically compartmentalized structure embedded in highly wired networks that are essential for cognitive functions. The hippocampal vulnerability has been postulated in acute and chronic neuroinflammation in multiple sclerosis, while the patterns of occurring inflammation, neurodegeneration or compensation have not yet been described. Besides focal damage to hippocampal tissue, network disruption is an important contributor to cognitive decline in multiple sclerosis patients. We postulate sex-specific trajectories in hippocampal network reorganization and regional integrity and address their relationship to markers of neuroinflammation, cognitive/memory performance and clinical severity. In a large cohort of multiple sclerosis patients (n = 476; 337 females, age 35 ± 10 years, disease duration 16 ± 14 months) and healthy subjects (n = 110, 54 females; age 34 ± 15 years), we utilized MRI at baseline and at 2-year follow-up to quantify regional hippocampal volumetry and reconstruct single-subject hippocampal networks. Through graph analytical tools we assessed the clustered topology of the hippocampal networks. Mixed-effects analyses served to model sex-based differences in hippocampal network and subfield integrity between multiple sclerosis patients and healthy subjects at both time points and longitudinally. Afterwards, hippocampal network and subfield integrity were related to clinical and radiological variables in dependency of sex attribution. We found a more clustered network architecture in both female and male patients compared to their healthy counterparts. At both time points, female patients displayed a more clustered network topology in comparison to male patients. Over time, multiple sclerosis patients developed an even more clustered network architecture, though with a greater magnitude in females. We detected reduced regional volumes in most of the addressed hippocampal subfields in both female and male patients compared to healthy subjects. Compared to male patients, females displayed lower volumes of para- and presubiculum but higher volumes of the molecular layer. Longitudinally, volumetric alterations were more pronounced in female patients, which showed a more extensive regional tissue loss. Despite a comparable cognitive/memory performance between female and male patients over the follow-up period, we identified a strong interrelation between hippocampal network properties and cognitive/memory performance only in female patients. Our findings evidence a more clustered hippocampal network topology in female patients with a more extensive subfield volume loss over time. A stronger relation between cognitive/memory performance and the network topology in female patients suggests greater entrainment of the brain’s reserve. These results may serve to adapt sex-targeted neuropsychological interventions.
Collapse
Affiliation(s)
- Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany.,Department of Neurology, Institute of Emergency Medicine, Chisinau 2004, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau 2004, Moldova
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Angela Radetz
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Maren Person
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Andreas Johnen
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Nils C Landmeyer
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| |
Collapse
|
8
|
Gonzalez-Escamilla G, Ciolac D, De Santis S, Radetz A, Fleischer V, Droby A, Roebroeck A, Meuth SG, Muthuraman M, Groppa S. Gray matter network reorganization in multiple sclerosis from 7-Tesla and 3-Tesla MRI data. Ann Clin Transl Neurol 2020; 7:543-553. [PMID: 32255566 PMCID: PMC7187719 DOI: 10.1002/acn3.51029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Objective The objective of this study was to determine the ability of 7T‐MRI for characterizing brain tissue integrity in early relapsing‐remitting MS patients compared to conventional 3T‐MRI and to investigate whether 7T‐MRI improves the performance for detecting cortical gray matter neurodegeneration and its associated network reorganization dynamics. Methods Seven early relapsing‐remitting MS patients and seven healthy individuals received MRI at 7T and 3T, whereas 30 and 40 healthy controls underwent separate 3T‐ and 7T‐MRI sessions, respectively. Surface‐based cortical thickness (CT) and gray‐to‐white contrast (GWc) measures were used to model morphometric networks, analyzed with graph theory by means of modularity, clustering coefficient, path length, and small‐worldness. Results 7T‐MRI had lower CT and higher GWc compared to 3T‐MRI in MS. CT and GWc measures robustly differentiated MS from controls at 3T‐MRI. 7T‐ and 3T‐MRI showed high regional correspondence for CT (r = 0.72, P = 2e‐78) and GWc (r = 0.83, P = 5.5e‐121) in MS patients. MS CT and GWc morphometric networks at 7T‐MRI showed higher modularity, clustering coefficient, and small‐worldness than 3T, also compared to controls. Interpretation 7T‐MRI allows to more precisely quantify morphometric alterations across the cortical mantle and captures more sensitively MS‐related network reorganization. Our findings open new avenues to design more accurate studies quantifying brain tissue loss and test treatment effects on tissue repair.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Angela Radetz
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Amgad Droby
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|