1
|
Zhao W, Chen Y, Xiao J, Tang Z, Wang L, Ren Y, Chen Y. Updated outcomes and exploratory analysis of RENMIN-215: tislelizumab plus fruquintinib and fecal microbiota transplantation in refractory microsatellite stable metastatic colorectal cancer. Am J Cancer Res 2024; 14:5351-5364. [PMID: 39659943 PMCID: PMC11626257 DOI: 10.62347/xkuj3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Primary analysis of the open-label, single-arm, phase II RENMIN-215 trial (primary data cutoff date: July 10, 2023) showed promising efficacy and tolerable safety with tislelizumab plus fruquintinib and fecal microbiota transplantation (FMT) in patients with refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Here, we reported updated survival and safety results with a median follow-up of 34.0 months (data cut-off May 20, 2024), as well as patient-reported outcomes and laboratory analysis. Twenty patients with MSS mCRC resistant or refractory to at least second-line therapy were enrolled and received tislelizumab plus fruquintinib and FMT. The primary endpoint was progression-free survival. Secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate, safety, health-related quality of life questionnaire and exploratory laboratory tests. In addition, 94 mCRC patients who received third-line or above immunotherapy in real world were screened for propensity score matching (PSM) analysis to compare efficacy. Our results showed that the median OS was 13.7 months (95% CI, 9.3-17.7), and the ORR was 20.0% (95% CI, 5.7-43.7). After PSM, the median OS benefit of the study regimen remained statistically significant (HR = 0.26; 95% CI, 0.07-0.95; P = 0.042). Patients with primary tumor surgery had better clinical outcomes. No new safety concerns were detected. Seven (35.0%) patients had one or more grade 3 treatment-related adverse events. The majority of patients had improved or stable global health status (GHS). Median time to deterioration for GHS was 7.7 months. Peripheral blood lymphocyte analysis showed that increased gamma-delta 2 T cells were positively associated with improved response and survival. To conclude, the updated results provide further evidence of sustained antitumor activity of tislelizumab plus fruquintinib and FMT in heavily pretreated MSS mCRC patients with a consistent safety profile.
Collapse
Affiliation(s)
- Wensi Zhao
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan, Hubei, China
| | - Yuan Chen
- Department of Oncology, Qianjiang Central Hospital of Yangtze UniversityQianjiang, Hubei, China
| | - Jiping Xiao
- Department of Abdominal Tumor Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic UniversityHuangshi, Hubei, China
| | - Ze Tang
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic UniversityHuangshi, Hubei, China
| | - Li Wang
- Department of Oncology, First People’s Hospital of Xiaochang CountyXiaogan, Hubei, China
| | - Yiping Ren
- Department of Oncology, Jingshan Union Hospital of Huazhong University of Science and TechnologyJingshan, Hubei, China
| | - Yongshun Chen
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan, Hubei, China
- Current affiliation: Cancer Center, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China
| |
Collapse
|
2
|
Langley D, Zimmermann K, Krenske E, Stefanutti G, Kimble RM, Holland AJA, Fear MW, Wood FM, Kenna T, Cuttle L. Unremitting pro-inflammatory T-cell phenotypes, and macrophage activity, following paediatric burn injury. Clin Transl Immunology 2024; 13:e1496. [PMID: 38463658 PMCID: PMC10921233 DOI: 10.1002/cti2.1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Objectives The aim of this study was to characterise the dynamic immune profile of paediatric burn patients for up to 18 months post-burn. Methods Flow cytometry was used to measure 25 cell markers, chemokines and cytokines which reflected both pro-inflammatory and anti-inflammatory immune profiles. Peripheral blood mononuclear cells from 6 paediatric burn patients who had returned for repeated burn and scar treatments for > 4 timepoints within 12 months post-burn were compared to four age-matched healthy controls. Results While overall proportions of T cells, NK cells and macrophages remained relatively constant, over time percentages of these immune cells differentiated into effector and proinflammatory cell phenotypes including Th17 and activated γδ T cells. Circulating proportions of γδ T cells increased their expression of pro-inflammatory mediators throughout the burn recovery, with a 3-6 fold increase of IL-17 at 1-3 weeks, and NFκβ 9-18 months post-burn. T-regulatory cell plasticity was also observed, and Treg phenotype proportions changed from systemically reduced skin-homing T-regs (CCR4+) and increased inflammatory (CCR6+) at 1-month post-burn, to double-positive cell types (CCR4+CCR6+) elevated in circulation for 18 months post-burn. Furthermore, Tregs were observed to proportionally express less IL-10 but increased TNF-α over 18 months. Conclusion Overall, these results indicate the circulating percentages of immune cells do not increase or decrease over time post-burn, instead they become highly specialised, inflammatory and skin-homing. In this patient population, these changes persisted for at least 18 months post-burn, this 'immune distraction' may limit the ability of immune cells to prioritise other threats post-burn, such as respiratory infections.
Collapse
Affiliation(s)
- Donna Langley
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
- Centre for Biomedical Technology (CBT)Queensland University of Technology (QUT)Kelvin GroveQLDAustralia
| | - Kate Zimmermann
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Emma Krenske
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Giorgio Stefanutti
- Department of Paediatric Surgery, Urology, Burns and TraumaChildren's Health Queensland, Queensland Children's HospitalSouth BrisbaneQLDAustralia
| | - Roy M Kimble
- Department of Paediatric Surgery, Urology, Burns and TraumaChildren's Health Queensland, Queensland Children's HospitalSouth BrisbaneQLDAustralia
| | - Andrew JA Holland
- The Children's Hospital at Westmead Burns Unit, Department of Paediatrics and Child Health, Kids Research InstituteSydney Medical School, The University of SydneySydneyNSWAustralia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
- Burns Service of Western AustraliaPerth Children's Hospital and Fiona Stanley HospitalPerthWAAustralia
| | - Tony Kenna
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Leila Cuttle
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Biomedical Technology (CBT)Queensland University of Technology (QUT)Kelvin GroveQLDAustralia
| |
Collapse
|
3
|
Pean P, Madec Y, Nerrienet E, Borand L, Laureillard D, Fernandez M, Marcy O, Scott-Algara D. Natural Killer Repertoire Restoration in TB/HIV Co-Infected Individuals Experienced an Immune Reconstitution Syndrome (CAMELIA Trial, ANRS 12153). Pathogens 2023; 12:1241. [PMID: 37887757 PMCID: PMC10610037 DOI: 10.3390/pathogens12101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
IRIS is a common complication in HIV-infected patients treated for tuberculosis (TB) and cART. Our aim was to evaluate NK cell reconstitution in HIV-infected patients with TB-IRIS compared to those without IRIS. 147 HIV-infected patients with TB from the CAMELIA trial were enrolled. HIV+TB+ patients were followed for 32 weeks. The NK cell repertoire was assessed in whole blood at different time points. As CAMELIA has two arms (early and late cART initiation), we analysed them separately. At enrolment, individuals had low CD4 cell counts (27 cells/mm3) and high plasma viral loads (5.76 and 5.50 log/mL for IRIS and non-IRIS individuals, respectively). Thirty-seven people developed IRIS (in the early and late arms). In the early and late arms, we observed similar proportions of total NK and NK cell subsets in TB-IRIS and non-IRIS individuals during follow-up, except for the CD56dimCD16pos (both arms) and CD56dimCD16neg (late arm only) subsets, which were higher in TB-IRIS and non-IRIS individuals, respectively, after cART. Regarding the repertoire and markers of NK cells, significant differences (lower expression of NKp30, NKG2A (CD159a), NKG2D (CD314) were observed in TB-IRIS compared to non-IRIS individuals after the start of cART. In the late arm, some changes (increased expression of CD69, NKG2C, CD158i) were observed in TB-IRIS compared to non-IRIS individuals, but only before cART initiation (during TB treatment). KIR expression by NK cells (CD158a and CD158i) was similar in both groups. CD69 expression by NK cells decreased in all groups. Expression of the NCR repertoire (NKp30, NKp44, NKp46) has similar kinetics in TB-IRIS subjects compared to non-IRIS subjects regardless of the arm analysed. NK cell reconstitution appeared to be better in TB-IRIS subjects. Although NK cell reconstitution is impaired in HIV infection after cART, as previously reported, it does not appear to be affected by the development of IRIS in HIV and TB-infected individuals.
Collapse
Affiliation(s)
- Polidy Pean
- Immunology Unit, Institute Pasteur du Cambodge, Phnom Pen 12000, Cambodia
| | - Yoann Madec
- Epidemiology of Emerging Diseases, Institut Pasteur, Université de Paris, 75000 Paris, France;
| | | | - Laurence Borand
- Clinical Research Team, Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phom Penh 12000, Cambodia;
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 20600, USA
| | - Didier Laureillard
- Infectious and Tropical Diseases Department, University Hospital, 30900 Nimes, France;
| | | | - Olivier Marcy
- Research Institute for Sustainable Development (IRD) EMR 271, National Institute for Health and Medical Research (INSERM) UMR 1219, University of Bordeaux, 33000 Bordeaux, France;
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire et Lymphocytes, Institut Pasteur, 75000 Paris, France;
| |
Collapse
|
4
|
Carey MN, Cameron LH, Rider NL, Hergenroeder A, Cohen A. What Came First: Malnutrition or Severe Disease? Pediatrics 2023; 152:e2022060983. [PMID: 37525975 DOI: 10.1542/peds.2022-060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 08/02/2023] Open
Abstract
A 20-year-old female with depression presented to the emergency department with chronic weight loss, weakness, fatigue, hair loss, rash, palpitations, and 2 weeks of cough. Initial history revealed that she had disordered eating habits with dietary restriction, experienced a 50-pound unintentional weight loss over 2 years despite reported adherence to nutritional supplementation, and had a normal gastrointestinal workup. On examination, she was markedly cachectic with a BMI of 10.3kg/m2 and hypotensive (84/69 mmHg). Her cardiovascular examination revealed a regular rate and rhythm without a murmur. Her breath sounds were diminished in the upper lobes bilaterally. A skin examination showed diffuse hair loss, skin breakdown, and peeling with a tender, erythematous, papular rash over the bilateral ankles, and nonpitting edema. A chest radiograph showed a right upper lobe opacity and lucent lesions in the left proximal humerus. A focused assessment with sonography for trauma examination showed a large pericardial effusion. Chest computed tomography revealed a right upper lobe opacity with an associated cavitation. Though she began improving with rifampin, isoniazid, pyrazinamide, ethambutol, levofloxacin, azithromycin, and nutritional rehabilitation, her clinical course was complicated by an acute worsening nearly 1 month into her hospitalization with persistent high fevers, worsening cough, development of a murmur, and worsening consolidation on chest computed tomography. Adolescent Medicine, Infectious Diseases, Gastroenterology, and Allergy and Immunology were consulted to guide the diagnostic evaluation and management of this patient's complex clinical course.
Collapse
Affiliation(s)
- Megan N Carey
- Department of Pediatrics
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas
| | - Lindsay H Cameron
- Department of Pediatrics
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas
- Infectious Diseases
| | - Nicholas L Rider
- Division of Clinical Informatics, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
- Division of Pediatric Allergy and Immunology, Liberty Mountain Medical Group, Lynchburg, Virginia
| | - Albert Hergenroeder
- Department of Pediatrics
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas
- Sections on Adolescent Medicine
| | - Adam Cohen
- Department of Pediatrics
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas
- Section on Pediatric Hospital Medicine, Baylor College of Medicine, Houston, Texas
- Pediatric Hospital Medicine
| |
Collapse
|
5
|
French MA. The Immunopathogenesis of Immune Reconstitution Inflammatory Syndrome Has Become Clearer, but More Complex. J Infect Dis 2023; 228:106-110. [PMID: 37040572 DOI: 10.1093/infdis/jiad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Affiliation(s)
- Martyn A French
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- Immunology Division, PathWest Laboratory Medicine, Perth, Australia
| |
Collapse
|
6
|
Wen L, Shi L, Wan SS, Xu T, Zhang L, Zhou ZG. Changes in the balance of Th17/Treg cells and oxidative stress markers in patients with HIV‑associated pulmonary tuberculosis who develop IRIS. Exp Ther Med 2023; 25:271. [PMID: 37206552 PMCID: PMC10189753 DOI: 10.3892/etm.2023.11970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023] Open
Abstract
Tuberculosis (TB) is the most common opportunistic infection in patients with acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV) infection and is one of the primary causes of death from AIDS. The increased accessibility to highly active antiretroviral therapy (HAART) has significantly improved the clinical outcome of patients with HIV infection. However, following ART, rapid restoration of the immune system leads to immune reconstitution inflammatory syndrome (IRIS). Oxidative stress and innate immunity play a role in TB-associated IRIS (TB-IRIS). The present study investigated the changes that occur in oxidative stress markers and T helper (Th)17/regulatory T (Treg) cell balance and their significance in IRIS patients with HIV-associated pulmonary TB. A total of 316 patients with HIV-associated pulmonary TB were treated with HAART and followed up regularly for 12 weeks. Those who developed IRIS were included in the IRIS group (n=60), while the remaining patients were included in the non-IRIS group (n=256). The changes in plasma oxidative stress markers superoxide dismutase (SOD) and malondialdehyde (MDA) were detected with the ELISA, and the ratio of Th17 to Treg cells in whole blood were analyzed before and after treatment through the flow cytometric assay. Following treatment, MDA and Th17 cells levels were significantly increased while SOD and Treg cells levels were decreased in the IRIS group (P<0.05) compared with before treatment. In the non-IRIS group, a non-significant decrease was observed in SOD levels (P>0.05), while the MDA levels significantly decreased compared with before treatment (P<0.05) and the Th17 and Treg cells levels were both significantly increased (P<0.05). After treatment, compared with the non-IRIS group, the IRIS group showed a significant increase in MDA and Th17 cells and decrease in SOD and Treg cells levels (P<0.05). In addition, Th17 cells levels were positively correlated with MDA but negatively correlated with SOD levels. Treg levels were negatively correlated with MDA and positively correlated with SOD levels (P<0.05). The area under the curve values of serum MDA and SOD, Th17 and Treg levels predicting the occurrence of IRIS were 0.738, 0.883, 0.722 and 0.719, respectively (P<0.05). These results indicated that the above parameters have certain diagnostic value for the occurrence of IRIS. The occurrence of IRIS in patients with HIV-associated pulmonary TB may be associated with oxidative stress and Th17/Treg cell imbalance.
Collapse
Affiliation(s)
- Long Wen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Lei Shi
- Department of Nursing, The Fourth Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Shan-Shan Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Tao Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Lei Zhang
- Department of Respiratory Medicine, Yicheng People's Hospital of Shandong, Zaozhuang, Shandong 277300, P.R. China
- Correspondence to: Dr Zhi-Guo Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, 311 Yingpan Road, Kaifu, Changsha, Hunan 410000, P.R. China
| | - Zhi-Guo Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
- Correspondence to: Dr Zhi-Guo Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, 311 Yingpan Road, Kaifu, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
7
|
Quinn CM, Poplin V, Kasibante J, Yuquimpo K, Gakuru J, Cresswell FV, Bahr NC. Tuberculosis IRIS: Pathogenesis, Presentation, and Management across the Spectrum of Disease. Life (Basel) 2020; 10:E262. [PMID: 33138069 PMCID: PMC7693460 DOI: 10.3390/life10110262] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART), while essential in combatting tuberculosis (TB) and HIV coinfection, is often complicated by the TB-associated immune reconstitution inflammatory syndrome (TB-IRIS). Depending on the TB disease site and treatment status at ART initiation, this immune-mediated worsening of TB pathology can take the form of paradoxical TB-IRIS, unmasking TB-IRIS, or CNS TB-IRIS. Each form of TB-IRIS has unique implications for diagnosis and treatment. Recently published studies have emphasized the importance of neutrophils and T cell subtypes in TB-IRIS pathogenesis, alongside the recognized role of CD4 T cells and macrophages. Research has also refined our prognostic understanding, revealing how the disease can impact lung function. While corticosteroids remain the only trial-supported therapy for prevention and management of TB-IRIS, increasing interest has been given to biologic therapies directly targeting the immune pathology. TB-IRIS, especially its unmasking form, remains incompletely described and more data is needed to validate biomarkers for diagnosis. Management strategies remain suboptimal, especially in the highly morbid central nervous system (CNS) form of the disease, and further trials are necessary to refine treatment. In this review we will summarize the current understanding of the immunopathogenesis, the presentation of TB-IRIS and the evidence for management recommendations.
Collapse
Affiliation(s)
- Carson M. Quinn
- School of Medicine, University of California, San Francisco, CA 94143, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
| | - Victoria Poplin
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS 66045, USA; (V.P.); (N.C.B.)
| | - John Kasibante
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
| | - Kyle Yuquimpo
- Department of Medicine, University of Kansas, Kansas City, KS 66045, USA;
| | - Jane Gakuru
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
| | - Fiona V. Cresswell
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Medical Research Council, Uganda Virus Research Unit, London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Nathan C. Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS 66045, USA; (V.P.); (N.C.B.)
| |
Collapse
|