1
|
Gao X, Zuo S. Immune landscape and immunotherapy of hepatocellular carcinoma: focus on innate and adaptive immune cells. Clin Exp Med 2023; 23:1881-1899. [PMID: 36773210 PMCID: PMC10543580 DOI: 10.1007/s10238-023-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is responsible for roughly 90% of all cases of primary liver cancer, and the cases are on the rise. The treatment of advanced HCC is a serious challenge. Immune checkpoint inhibitor (ICI) therapy has marked a watershed moment in the history of HCC systemic treatment. Atezolizumab in combination with bevacizumab has been approved as a first-line treatment for advanced HCC since 2020; however, the combination therapy is only effective in a limited percentage of patients. Considering that the tumor immune microenvironment (TIME) has a great impact on immunotherapies for HCC, an in-depth understanding of the immune landscape in tumors and the current immunotherapeutic approaches is extremely necessary. We elaborate on the features, functions, and cross talk of the innate and adaptive immune cells in HCC and highlight the benefits and drawbacks of various immunotherapies for advanced HCC, as well as future projections. HCC consists of a heterogeneous group of cancers with distinct etiologies and immune microenvironments. Almost all the components of innate and adaptive immune cells in HCC have altered, showing a decreasing trend in the number of tumor suppressor cells and an increasing trend in the pro-cancer cells, and there is also cross talk between various cell types. Various immunotherapies for HCC have also shown promising efficacy and application prospect. There are multilayered interwoven webs among various immune cell types in HCC, and emerging evidence demonstrates the promising prospect of immunotherapeutic approaches for HCC.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China.
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Yoo D, Min KW, Pyo JS, Kim NY. Diagnostic and Prognostic Roles of GATA3 Immunohistochemistry in Urothelial Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1452. [PMID: 37629741 PMCID: PMC10456966 DOI: 10.3390/medicina59081452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
This study aimed to evaluate the diagnostic and prognostic roles of GATA-binding protein 3 (GATA3) immunohistochemistry in urothelial carcinoma (UC) using a meta-analysis. We investigated GATA3 immunohistochemical expression rates and performed a subgroup analysis based on tumor site, study location, and histological subtypes. The overall survival rates of patients with GATA3-positive and -negative UC were compared. The estimated GATA3 expression rate was 0.748 (95% confidence interval [CI]: 0.704-0.787). GATA3 expression rates in the urinary bladder and urinary tract were 0.775 (95% CI: 0.727-0.818) and 0.614 (95% CI: 0.426-0.774), respectively. The GATA3 expression rates of noninvasive and invasive UCs were 0.965 (95% CI: 0.938-0.980) and 0.644 (95% CI: 0.581-0.702), respectively. In invasive UCs, there was a significant difference in GATA3 expression between non-muscular invasion and muscular invasion subgroups (0.937, 95% CI: 0.883-0.967 vs. 0.753, 95% CI: 0.645-0.836). GATA3 expression was the highest in the microcytic subtype among the histologic subtypes (0.952, 95% CI: 0.724-0.993). There was a significant correlation between GATA3 expression and better prognosis (hazard ratio: 0.402, 95% CI: 0.311-0.521). Taken together, GATA3 expression significantly correlated with low-stage and better prognosis in UC. GATA3 expression is highly variable across histological subtypes, and one should be careful while interpreting GATA3 expression.
Collapse
Affiliation(s)
- Daeseon Yoo
- Department of Urology, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea;
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Republic of Korea;
| | - Jung-Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Republic of Korea;
| | - Nae Yu Kim
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Republic of Korea
| |
Collapse
|
3
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
4
|
Corvino D, Kumar A, Bald T. Plasticity of NK cells in Cancer. Front Immunol 2022; 13:888313. [PMID: 35619715 PMCID: PMC9127295 DOI: 10.3389/fimmu.2022.888313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are crucial to various facets of human immunity and function through direct cytotoxicity or via orchestration of the broader immune response. NK cells exist across a wide range of functional and phenotypic identities. Murine and human studies have revealed that NK cells possess substantial plasticity and can alter their function and phenotype in response to external signals. NK cells also play a critical role in tumor immunity and form the basis for many emerging immunotherapeutic approaches. NK cells can directly target and lyse malignant cells with their inherent cytotoxic capabilities. In addition to direct targeting of malignant cells, certain subsets of NK cells can mediate antibody-dependent cellular cytotoxicity (ADCC) which is integral to some forms of immune checkpoint-blockade immunotherapy. Another important feature of various NK cell subsets is to co-ordinate anti-tumor immune responses by recruiting adaptive and innate leukocytes. However, given the diverse range of NK cell identities it is unsurprising that both pro-tumoral and anti-tumoral NK cell subsets have been described. Here, NK cell subsets have been shown to promote angiogenesis, drive inflammation and immune evasion in the tumor microenvironment. To date, the signals that drive tumor-infiltrating NK cells towards the acquisition of a pro- or anti-tumoral function are poorly understood. The notion of tumor microenvironment-driven NK cell plasticity has substantial implications for the development of NK-based immunotherapeutics. This review will highlight the current knowledge of NK cell plasticity pertaining to the tumor microenvironment. Additionally, this review will pose critical and relevant questions that need to be addressed by the field in coming years.
Collapse
Affiliation(s)
- Dillon Corvino
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ananthi Kumar
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bald
- Tumor-Immunobiology, Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
TIMP1 and TIMP2 Downregulate TGFβ Induced Decidual-like Phenotype in Natural Killer Cells. Cancers (Basel) 2021; 13:cancers13194955. [PMID: 34638439 PMCID: PMC8507839 DOI: 10.3390/cancers13194955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer patients are characterized by NK cells with altered surface markers, such as CD56 brightness, CD9, CD49a (pro-angiogenic) and PD-1, and TIM-3 (exhaustion), that favor immune escape. Transforming growth factor-beta (TGFβ) is a major tumor-derived cytokine that favors cancer growth and supports pro-angiogenic activities in NK cells by inducing pro-angiogenic molecules. TIMP-1 and TIMP-2 play a crucial role in extracellular matrix (ECM) regulation, wound healing, pregnancy and cancer, and there is increasing evidence that they are immune-modulatory. We found that recombinant TIMP-1 and -2 can partially contrast the induction of pro-tumor/pro-angiogenic decidual-like polarization of NK cells by TGFβ. Abstract Natural Killer (NK) cells have been found to be anergic, exhausted and pro-angiogenic in cancers. NK cell from healthy donors, exposed to TGFβ, acquire the CD56brightCD9+CD49a+ decidual-like-phenotype, together with decreased levels of NKG2D activation marker, increased levels of TIM-3 exhaustion marker, similar to cancer-associated NK cells. Tissue inhibitors of metalloproteases (TIMPs) exert dual roles in cancer. The role of TIMPs in modulating immune cells is a very novel concept, and the present is the first report studying their ability to contrast TGFβ action on NK cells. Here, we investigated the effects of TIMP1 and TIMP2 recombinant proteins in hindering decidual-like markers in NK cells, generated by polarizing cytolytic NK cells with TGFβ. The effects of TIMP1 or TIMP2 on NK cell surface antigens were determined by multicolor flow cytometry. We found that TIMP1 and TIMP2 were effective in interfering with TGFβ induced NK cell polarization towards a decidual-like-phenotype. TIMP1 and TIMP2 counteracted the effect of TGFβ in increasing the percentage of CD56bright, CD16−, CD9+ and CD49a+, and restoring normal levels for TIMP 1 and 2 also inhibited decrease levels of the activation marker NKG2D induced by TGFβ and decreased the TGFβ upregulated exhaustion marker TIM-3. NK cell degranulation capabilities against K562 cells were also decreased by TGFβ and not by TIMP1 or TIMP2. TIMP1 treatment could partially restore degranulation marker CD107a expression. Treatment with recombinant TIMP-1 or TIMP-2 showed a trend, although not statistically significant, to decrease CD49a+ and TIM-3+ expression and increase NKG2D in peripheral blood NK cells exposed to conditioned media from colon cancer cell lines. Our results suggest a potential role of TIMPs in controlling the tumor-associated cytokine TGFβ-induced NK cell polarization. Given the heterogeneity of released factors within the TME, it is clear that TGFβ stimulation represents a model to prove TIMP’s new properties, but it cannot be envisaged as a soloist NK cell polarizing agent. Therefore, further studies from the scientific community will help defining TIMPs immunomodulatory activities of NK cells in cancer, and their possible future diagnostic–therapeutic roles.
Collapse
|
6
|
Quatrini L, Tumino N, Moretta F, Besi F, Vacca P, Moretta L. Helper Innate Lymphoid Cells in Allogenic Hematopoietic Stem Cell Transplantation and Graft Versus Host Disease. Front Immunol 2020; 11:582098. [PMID: 33101308 PMCID: PMC7554507 DOI: 10.3389/fimmu.2020.582098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Helper Innate Lymphoid Cells (hILCs), including ILC1s, ILC2s, and ILC3s, are mainly localized at the mucosal barriers where they play an important role in tissue regeneration and homeostasis through the secretion of specific sets of cytokines. The recent identification of a circulating ILC precursor able to generate all ILC mature subsets in physiological conditions, suggests that “ILC-poiesis” may be important in the context of hematopoietic stem cell transplantation (HSCT). Indeed, in HSCT the conditioning regimen (chemotherapy and radiotherapy) and Graft vs Host Disease (GvHD) may cause severe damages to mucosal tissues. Therefore, it is conceivable that rapid reconstitution of the hILC compartment may be beneficial in HSCT, by promoting mucosal tissue repair/regeneration and providing protection from opportunistic infections. In this review, we will summarize the evidence for a role of hILCs in allogenic HSCT for the treatment of hematological malignancies in all its steps, from the preparative regimen to the immune reconstitution in the recipient. The protective properties of hILCs at the mucosal barrier interfaces make them an attractive target to exploit in future cellular therapies aimed at improving allogenic HSCT outcome.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Francesca Besi
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
7
|
Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2020; 80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Daniela Pende
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
8
|
Belz GT, Denman R, Seillet C, Jacquelot N. Tissue-resident lymphocytes: weaponized sentinels at barrier surfaces. F1000Res 2020; 9. [PMID: 32695313 PMCID: PMC7348522 DOI: 10.12688/f1000research.25234.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident immune cells stably localize in tissues largely independent of the circulatory system. While initial studies have focused on the recognition of CD8
+ tissue-resident memory T (CD8 T
RM) cells, it is now clear that numerous cell types such as CD4
+ T cells, gd T cells, innate lymphoid cells and mucosal-associated invariant T (MAIT) cells form stable populations in tissues. They are enriched at the barrier surfaces and within non-lymphoid compartments. They provide an extensive immune network capable of sensing local perturbations of the body’s homeostasis. This positioning enables immune cells to positively influence immune protection against infection and cancer but paradoxically also augment autoimmunity, allergy and chronic inflammatory diseases. Here, we highlight the recent studies across multiple lymphoid immune cell types that have emerged on this research topic and extend our understanding of this important cellular network. In addition, we highlight the areas that remain gaps in our knowledge of the regulation of these cells and how a deeper understanding may result in new ways to ‘target’ these cells to influence disease outcome and treatments.
Collapse
Affiliation(s)
- Gabrielle T Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, 4102, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Renae Denman
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, 4102, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|