1
|
Dørflinger GH, Holt CB, Thiel S, Bech JN, Østergaard JA, Bjerre M. Mannan-Binding Lectin Is Associated with Inflammation and Kidney Damage in a Mouse Model of Type 2 Diabetes. Int J Mol Sci 2024; 25:7204. [PMID: 39000309 PMCID: PMC11241296 DOI: 10.3390/ijms25137204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Autoreactivity of the complement system may escalate the development of diabetic nephropathy. We used the BTBR OB mouse model of type 2 diabetes to investigate the role of the complement factor mannan-binding lectin (MBL) in diabetic nephropathy. Female BTBR OB mice (n = 30) and BTBR non-diabetic WT mice (n = 30) were included. Plasma samples (weeks 12 and 21) and urine samples (week 19) were analyzed for MBL, C3, C3-fragments, SAA3, and markers for renal function. Renal tissue sections were analyzed for fibrosis, inflammation, and complement deposition. The renal cortex was analyzed for gene expression (complement, inflammation, and fibrosis), and isolated glomerular cells were investigated for MBL protein. Human vascular endothelial cells cultured under normo- and hyperglycemic conditions were analyzed by flow cytometry. We found that the OB mice had elevated plasma and urine concentrations of MBL-C (p < 0.0001 and p < 0.001, respectively) and higher plasma C3 levels (p < 0.001) compared to WT mice. Renal cryosections from OB mice showed increased MBL-C and C4 deposition in the glomeruli and increased macrophage infiltration (p = 0.002). Isolated glomeruli revealed significantly higher MBL protein levels (p < 0.001) compared to the OB and WT mice, and no renal MBL expression was detected. We report that chronic inflammation plays an important role in the development of DN through the binding of MBL to hyperglycemia-exposed renal cells.
Collapse
Affiliation(s)
- Gry H. Dørflinger
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (G.H.D.); (C.B.H.)
- Department of Internal Medicine, Regional Hospital Gødstrup, 7400 Herning, Denmark;
| | - Charlotte B. Holt
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (G.H.D.); (C.B.H.)
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Jesper N. Bech
- Department of Internal Medicine, Regional Hospital Gødstrup, 7400 Herning, Denmark;
- University Clinic in Nephrology and Hypertension, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jakob A. Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Steno Diabetes Center Aarhus, 8200 Aarhus, Denmark
| | - Mette Bjerre
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (G.H.D.); (C.B.H.)
| |
Collapse
|
2
|
Charlotte Brinck H, Lene H, Tom D, Wilhelm S, Troels Krarup H, Steffen T, Jakob Appel Ø. MASP-2 deficiency does not prevent the progression of diabetic kidney disease in a mouse model of type 1 diabetes. Scand J Immunol 2024; 99:e13348. [PMID: 39008346 DOI: 10.1111/sji.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 07/16/2024]
Abstract
Mannan-binding lectin (MBL) initiates the lectin pathway of complement and has been linked to albuminuria and mortality in diabetes. We hypothesize that MBL-associated serine protease 2 (MASP-2) deficiency will protect against diabetes-induced kidney damage. Male C57BL/6J MASP-2 knockout (Masp2-/-) mice and wildtype (WT) mice were divided into a diabetic group and a non-diabetic group. Renal hypertrophy, albumin excretion, mesangial area and specific mRNA expressions in the renal cortex were measured after 8 and 12 weeks of diabetes. By two-way ANOVA it was tested if MASP-2 modulated the renal effects of diabetes, that is interaction. After 12 weeks of diabetes Masp2-/- diabetic mice had a smaller mesangium at 21.1% of the glomerular area (95% CI 19.7, 22.6) compared with WT diabetic mice, 25.2% (23.2, 27.2), p(interaction) = 0.001. After 8 weeks of diabetes, plasma cystatin C was 261.5 ng/mL (229.6, 297.8) in the WT diabetic group compared to 459.9 ng/mL (385.7, 548.3) in non-diabetic WT mice, p < 0.001. By contrast, no difference in plasma cystatin C levels was found between the Masp2-/- diabetic mice, 288.2 ng/mL (260.6, 318.6) and Masp2-/- non-diabetic mice, 293.5 ng/mL (221.0, 389.7), p = 0.86 and p(interaction) = 0.001. We demonstrated a protective effect of MASP-2 deficiency on mesangial hypertrophy after 12 weeks of diabetes and an effect on plasma cystatin C level. MASP-2 deficiency did, however, fail to protect against diabetic-induced alterations of kidney weight, albuminuria and renal mRNA expression of fibrotic- and oxidative stress markers.
Collapse
Affiliation(s)
- Holt Charlotte Brinck
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Halkjær Lene
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Dudler Tom
- Omeros Corporation, Seattle, Washington, USA
| | - Schwaeble Wilhelm
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, UK
| | | | - Thiel Steffen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Østergaard Jakob Appel
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Ayano M, Horiuchi T. Complement as a Biomarker for Systemic Lupus Erythematosus. Biomolecules 2023; 13:367. [PMID: 36830735 PMCID: PMC9953581 DOI: 10.3390/biom13020367] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease of immune complex deposition; therefore, complement plays a vital role in the pathogenesis of SLE. In general, complement levels in blood and complement deposition in histological tests are used for the management of SLE. Thus, the evaluation of complement status can be useful in the diagnosis of SLE, assessment of disease activity, and prediction of treatment response and prognosis. In addition, novel complement biomarkers, such as split products and cell-bound complement activation products, are considered to be more sensitive than traditional complement markers, such as serum C3 and C4 levels and total complement activity (CH50), which become more widely used. In this review, we report the complement testing in the management of SLE over the last decade and summarize their utility.
Collapse
Affiliation(s)
- Masahiro Ayano
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Cancer Stem Cell Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, 4546 Tsurumibaru, Tsurumi, Beppu 874-0838, Japan
| |
Collapse
|
4
|
Brandwijk RJMGE, Michels MAHM, van Rossum M, de Nooijer AH, Nilsson PH, de Bruin WCC, Toonen EJM. Pitfalls in complement analysis: A systematic literature review of assessing complement activation. Front Immunol 2022; 13:1007102. [PMID: 36330514 PMCID: PMC9623276 DOI: 10.3389/fimmu.2022.1007102] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The complement system is an essential component of our innate defense and plays a vital role in the pathogenesis of many diseases. Assessment of complement activation is critical in monitoring both disease progression and response to therapy. Complement analysis requires accurate and standardized sampling and assay procedures, which has proven to be challenging. Objective We performed a systematic analysis of the current methods used to assess complement components and reviewed whether the identified studies performed their complement measurements according to the recommended practice regarding pre-analytical sample handling and assay technique. Results are supplemented with own data regarding the assessment of key complement biomarkers to illustrate the importance of accurate sampling and measuring of complement components. Methods A literature search using the Pubmed/MEDLINE database was performed focusing on studies measuring the key complement components C3, C5 and/or their split products and/or the soluble variant of the terminal C5b-9 complement complex (sTCC) in human blood samples that were published between February 2017 and February 2022. The identified studies were reviewed whether they had used the correct sample type and techniques for their analyses. Results A total of 92 out of 376 studies were selected for full-text analysis. Forty-five studies (49%) were identified as using the correct sample type and techniques for their complement analyses, while 25 studies (27%) did not use the correct sample type or technique. For 22 studies (24%), it was not specified which sample type was used. Conclusion A substantial part of the reviewed studies did not use the appropriate sample type for assessing complement activation or did not mention which sample type was used. This deviation from the standardized procedure can lead to misinterpretation of complement biomarker levels and hampers proper comparison of complement measurements between studies. Therefore, this study underlines the necessity of general guidelines for accurate and standardized complement analysis
Collapse
Affiliation(s)
| | - Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara van Rossum
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
| | - Aline H. de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Per H. Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Erik J. M. Toonen
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
- *Correspondence: Erik J. M. Toonen,
| |
Collapse
|
5
|
Wong CJ, Wang L, Holers VM, Frazer-Abel A, van der Maarel SM, Tawil R, Statland JM, Tapscott SJ. Elevated plasma complement components in facioscapulohumeral dystrophy. Hum Mol Genet 2022; 31:1821-1829. [PMID: 34919696 PMCID: PMC9169453 DOI: 10.1093/hmg/ddab364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to several therapeutic approaches entering clinical trials and an increased need to develop biomarkers of disease activity and progression. Multiple prior studies have shown early elevation of RNAs encoding components of the complement pathways and relatively widespread activated complement complexes by immunodetection in FSHD muscle. The current study tested plasma from two independent cohorts of FSHD and control subjects and found elevated complement components in both FSHD cohorts. Combining subjects from both cohorts identified complement factors that best distinguished FSHD and controls. Within the FSHD group, a subset of subjects showed elevation in multiple complement components. Together these findings suggest the need for future studies to determine whether measurements of complement activation can be used as a non-invasive measurement of FSHD disease activity, progression and/or response to therapies. In addition, with the ongoing expansion of complement therapeutic approaches, consideration for precision-based targeting of this pathway is appropriate.
Collapse
Affiliation(s)
- Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Leo Wang
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ashley Frazer-Abel
- Exsera BioLabs, Division of Rheumatalogy, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KA 66160, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
6
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|