1
|
Li X, Li R, Huang J, Hu Y, Fan C, Wang X, Yu H. Unleashing the Potential: Exploring the Application and Mechanism of Mesenchymal Stem Cells in Autoimmune Diseases. Stem Cells Int 2025; 2025:9440377. [PMID: 40264926 PMCID: PMC12014271 DOI: 10.1155/sci/9440377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Autoimmune diseases (AIDs) occur when the immune system mistakenly attacks the body's own antigens. Traditionally, these conditions are treated with nonspecific immunosuppressive therapies, including corticosteroids, immunosuppressants, biological agents, and human immunoglobulins. However, these treatments often fail to achieve optimal outcomes, especially for patients with severe cases. Mesenchymal stem cells (MSCs) present a promising alternative due to their robust self-renewal capabilities and multidirectional differentiation potential. MSCs are easily accessible, exhibit low immunogenicity, and can help reduce graft rejection. MSCs can inhibit T cell proliferation, reduce proinflammatory T cells, inhibit B cell differentiation, induce macrophage polarization towards the anti-inflammatory M2 phenotype, and suppress activity of natural killer (NK) cells and dendritic cells (DCs). Additionally, MSCs can regulate T cells, macrophages, and fibroblast-like synoviocytes (FLS) by releasing microRNA (miRNA) through exosomes or extracellular vesicles (EVs), thus providing therapeutic benefits for various diseases. Numerous clinical trials have highlighted the therapeutic benefits of MSCs in treating various AIDs, leading to increased interest in MSC transplantation. This review summarizes the current applications and mechanisms of action of MSCs in the treatment of AIDs.
Collapse
Affiliation(s)
- Xinqi Li
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rongli Li
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuelin Hu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Rodacki M, Silva KR, Araujo DB, Dantas JR, Ramos MEN, Zajdenverg L, Baptista LS. Immunomodulatory agents and cell therapy for patients with type 1 diabetes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240233. [PMID: 40215356 PMCID: PMC11967186 DOI: 10.20945/2359-4292-2024-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 04/15/2025]
Abstract
Type 1 diabetes (TID) is a chronic disease caused by autoimmune destruction of pancreatic β-cells, that progresses in three stages: 1) stage 1: β-cell autoimmunity + normoglycemia; 2) stage 2: β-cell autoimmunity + mild dysglycemia; 3) stage 3: symptomatic disease + hyperglycemia. Interventions to prevent or cure T1D in the various stages of the disease have been pursued and may target the prevention of the destruction of β cells, regression of insulitis, preservation or recovery of β cells residual mass. Some therapies show promising results that might change the natural history and the approach to patients with T1D in the next few years. Teplizumab, a humanized monoclonal antibody that binds to CD3, was recently approved in the USA to delay Stage 3 T1D in individuals ≥ 8 years of age. Other non-cellular immunomodulatory therapies, both antigen-specific and non-specific, have shown interesting results either in patients with stage 2 or recent onset stage 3 T1D. Cell therapies such as non-myeloablative transplantation of autologous hematopoietic stem cells, mesenchymal stem cells, and tolerogenic dendritic cells have been also studied in these individuals, aiming immunomodulation. Stem cell-derived islet replacement therapy is promising for patients with long- standing T1D, especially with asymptomatic hypoglycemia not resolved by technology. This review aimed to provide updated information on the main immunomodulatory agents and cell therapy options for type 1 diabetes.
Collapse
Affiliation(s)
- Melanie Rodacki
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Karina Ribeiro Silva
- Laboratório de Pesquisa com Células-Tronco, Departamento de
Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Joana R. Dantas
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Lenita Zajdenverg
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Leandra Santos Baptista
- NUMPEX-BIO, Campus Duque de Caxias Professor Geraldo Cidade, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Hsiao PJ, Kao WY, Sung LC, Lin CY, Tsou LLA, Kao YH, Chou CL, Lee KT. The Role of Mesenchymal Stem Cells in Treating Diabetic Kidney Disease: Immunomodulatory Effects and Kidney Regeneration. Int J Med Sci 2025; 22:1720-1735. [PMID: 40093796 PMCID: PMC11905258 DOI: 10.7150/ijms.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Diabetic kidney disease (DKD), also known as diabetic nephropathy (DN), is characterized by progressive glomerulosclerosis and chronic inflammation. The potential of mesenchymal stem cells (MSCs) in treating DKD could be explored. Methods: In this study, a streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) DKD mouse model was utilized to investigate the renoprotective potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) through immunohistochemical, histopathological, and biochemical analyses. Two separate experiments were conducted to assess the therapeutic efficacy of hUC-MSCs in a DN mouse model. The first experiment determined the optimal dose by assigning the body weight and food intake alterations, serum cytokines and kidney function changes post hUC-MSCs treatment. STZ-induced DKD mice were divided to four groups: DKD control and other three hUC-MSCs treatment groups (low-dose: 3x106, intermediate (middle)-dose: 1x107, and high-dose: 3x107 cells/kg), with intravenous administration at weeks 8, 10, and 12 over 14 weeks. The second experiment evaluated treatment frequency, with mice assigned to hUC-MSCs x1, x2, and x3 groups (3x107 cells/kg) administered at weeks 5, 6, and 7 across 12 weeks, assessing the kidney histology and morphometry changes. Results: In the first experiment, the body weight and food intake showed no significant alterations among the DN and other 3 hUC-MSCs treatment groups. Compared to the DKD control group, only high-dose hUC-MSCs (3x107 cells/kg) treatment group significantly reduced the levels of inflammatory cytokines (IL-1β, and TNF-α) (p <0.05). Additionally, the urine albumin-to-creatinine ratio (UACR) levels in the high-dose hUC-MSCs (3×10⁷ cells/kg) treatment group showed a decreasing trend compared to those in the DN control group (p = 0.06). In the second experiment, the hUC-MSCs x3 treatment group (3×10⁷ cells/kg) significantly alleviated kidney histopathology compared to the DKD group (p <0.05). Conclusion: hUC-MSCs treatment may present a potential avenue for reversing glomerulosclerosis and mitigating inflammation in DKD mice. The long-term therapeutic benefits of MSCs-based treatments in patients with DKD and other kidney diseases could be further investigated.
Collapse
Affiliation(s)
- Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wen-Yi Kao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Centre of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Liam Li-An Tsou
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, NY, USA
- Biochemistry, Department of Chemistry, Hofstra University, Hempstead, New York, USA
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chu-Lin Chou
- Taipei Medical University-Research Centre of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Li L, He Y, Zhao J, Yin H, Feng X, Fan X, Wu W, Lu Q. Mesenchymal Stromal Cell-Based Therapy: A Promising Approach for Autoimmune Diseases. Clin Rev Allergy Immunol 2025; 68:21. [PMID: 39982546 DOI: 10.1007/s12016-025-09030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Autoimmune diseases are characterized by immune dysregulation, resulting in aberrant reactivity of T cells and antibodies to self-antigens, leading to various patterns of inflammation and organ dysfunction. However, current therapeutic agents exhibit broad-spectrum activity and lack disease-specific selectivity, leading to enduring adverse effects, notably severe infections, and malignancies, and patients often fail to achieve the intended clinical goals. Mesenchymal stromal cells (MSCs) are multipotent stromal cells that can be easily derived from various tissues, such as adipose tissue, umbilical cords, Wharton's jelly, placenta, and dental tissues. MSCs offer advantages due to their immunomodulatory and anti-inflammatory abilities, low immunogenicity, and a high capacity for proliferation and multipotent differentiation, making them excellent candidates for cell-based treatment in autoimmune disorders. This review will cover preclinical studies and clinical trials involving MSCs in autoimmune diseases, as well as the primary challenges associated with the clinical application of MSC therapies and strategies for maximizing their therapeutic potential.
Collapse
Affiliation(s)
- Liming Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong He
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Junpeng Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqi Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiwei Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xinyu Fan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
5
|
Ghassemifard L, Hasanlu M, Parsamanesh N, Atkin SL, Almahmeed W, Sahebkar A. Cell Therapies and Gene Therapy for Diabetes: Current Progress. Curr Diabetes Rev 2025; 21:e130524229899. [PMID: 38747221 DOI: 10.2174/0115733998292392240425122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2025]
Abstract
The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.
Collapse
Affiliation(s)
- Leila Ghassemifard
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masumeh Hasanlu
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
7
|
Leão IS, Dantas JR, Araújo DB, Ramos MEN, Silva KR, Batista LS, Pereira MDFC, Luiz RR, da Silva CC, Maiolino A, Rebelatto CLK, Daga DR, Senegaglia AC, Brofman PRS, de Oliveira JEP, Zajdenverg L, Rodacki M. Evaluation of type 1 diabetes' partial clinical remission after three years of heterologous adipose tissue derived stromal/stem cells transplantation associated with vitamin D supplementation. Diabetol Metab Syndr 2024; 16:114. [PMID: 38790009 PMCID: PMC11127374 DOI: 10.1186/s13098-024-01302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell infusion and vitamin D supplementation may have immunomodulatory actions that could prolong the preservation of residual insulin secretion in patients with type 1 diabetes (T1D). Intervention with these agents after onset of T1D could favor the development of a remission phase, with potential clinical impact. We aimed to compare the presence of clinical remission (CR), glycemic control and daily insulin requirement at 6, 12, 18, 24 and 36 months after the diagnosis of T1D using IDAA1c in patients who received therapy with adipose tissue-derived mesenchymal stem cell (ASC) infusion and vitamin D supplementation and a control group. METHODS This retrospective cohort study analyzed data from the medical records of patients with T1D diagnosed between 15 and 40 years. Partial CR was defined as an IDAA1c index < 9. Patients in the intervention group received an infusion of adipose tissued-derived mesenchymal stem cells (ASCs) within 3 months after diagnosis and supplementation with 2000 IU of cholecalciferol for 1 year, started on the day following the infusion. Partial CR was also determined using the ISPAD criteria, to assess its agreement with IDAA1c. RESULTS A total of 28 patients were evaluated: 7 in the intervention group (group 1) and 21 in the control group (group 2). All patients in group 1 evolved with partial CR while only 46.7% of patients in group 2 had this outcome. Group 1 had a higher frequency of CR when evaluated with IDAA1c and ISPAD criteria. The mean duration of CR varied between the two criteria. Although HbA1c was similar between groups during follow-up, group 1 had a lower total daily insulin requirement (p < 0.005) at all time points. At 36 months, group 1 used 49% of the total daily insulin dose used by group 2 with similar glycemic control. CONCLUSION The intervention with infusion of ASC + vitamin D supplementation was associated with partial CR at 6 months. Although there were no differences in CR established by the IDAA1c and ISPAD criteria after three years of follow-up, patients who underwent intervention had nearly the half insulin requirement of controls with conventional treatment, with similar glycemic control. TRIAL REGISTRATION 37001514.0.0000.5257.
Collapse
Affiliation(s)
- Isabella Sued Leão
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil.
| | - Joana Rodrigues Dantas
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Débora Baptista Araújo
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Maria Eduarda Nascimento Ramos
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Histology and Embryology Departament, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandra S Batista
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Center for Biological Research (Numpex-Bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria de Fátima Carvalho Pereira
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Ronir Raggio Luiz
- Institute of Public Health Studies, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angelo Maiolino
- Hematology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Regina Daga
- Core Cell Technology, Pontifical Catholic University of Parana, Curitiba, Brazil
| | | | | | - José Egídio Paulo de Oliveira
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Lenita Zajdenverg
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Melanie Rodacki
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
9
|
Wang Y, Chen H, Li Y, Hao H, Liu J, Chen Y, Meng J, Zhang S, Gu W, Lyu Z, Zang L, Mu Y. Predictive factors that influence the clinical efficacy of umbilical cord-derived mesenchymal stromal cells in the treatment of type 2 diabetes mellitus. Cytotherapy 2024; 26:311-316. [PMID: 38219142 DOI: 10.1016/j.jcyt.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Our previous single-center, randomized, double-blinded, placebo-controlled phase 2 study evaluated the safety and effectiveness of human umbilical cord mesenchymal stromal cell (UC-MSC) transfusion for treating patients with type 2 diabetes mellitus (T2DM). Indeed, this potential treatment strategy was able to reduce insulin use by half in a considerable number of patients. However, many other patients' responses to UC-MSC transfusion were insignificant. The selection of patients who might benefit from UC-MSC treatment is crucial from a clinical standpoint. METHODS In this post hoc analysis, 37 patients who received UC-MSC transfusions were divided into two groups based on whether their glycated hemoglobin (hemoglobin A1c, or HbA1c) level was less than 7% after receiving UC-MSC treatment. The baseline differences between the two groups were summarized, and potential factors influencing efficacy of UC-MSCs for T2DM were analyzed by univariate and multivariate logistic regression. The correlations between the relevant hormone levels and the treatment effect were further analyzed. RESULTS At the 9-week follow-up, 59.5% of patients achieved their targeted HbA1c level. Male patients with lower baseline HbA1c and greater C-peptide area under the curve (AUCC-pep) values responded favorably to UC-MSC transfusion, according to multivariate analysis. The effectiveness of UC-MSCs transfusion was predicted by AUCC-pep (cutoff value: 14.22 ng/h/mL). Further investigation revealed that AUCC-pep was increased in male patients with greater baseline testosterone levels. CONCLUSIONS Male patients with T2DM with greater AUCC-pep may be more likely to respond clinically to UC-MSC therapy, and further large-scale multi-ethnic clinical studies should be performed to confirm the conclusion.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China
| | - Haixu Chen
- Institute of Geriatrics & National Clinical Research Center of Geriatrics Disease, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulong Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junhua Meng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Nassar M, Chaudhuri A, Ghanim H, Dandona P. Glucagon-like peptide-1 receptor agonists as a possible intervention to delay the onset of type 1 diabetes: A new horizon. World J Diabetes 2024; 15:133-136. [PMID: 38464377 PMCID: PMC10921167 DOI: 10.4239/wjd.v15.i2.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that destroys insulin-producing beta cells in the pancreas, leading to insulin deficiency and hyper-glycemia. The management of T1D primarily focuses on exogenous insulin replacement to control blood glucose levels. However, this approach does not address the underlying autoimmune process or prevent the progressive loss of beta cells. Recent research has explored the potential of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as a novel intervention to modify the disease course and delay the onset of T1D. GLP-1RAs are medications initially developed for treating type 2 diabetes. They exert their effects by enhancing glucose-dependent insulin secretion, suppressing glucagon secretion, and slowing gastric emptying. Emerging evidence suggests that GLP-1RAs may also benefit the treatment of newly diagnosed patients with T1D. This article aims to highlight the potential of GLP-1RAs as an intervention to delay the onset of T1D, possibly through their potential immunomodulatory and anti-inflammatory effects and preservation of beta-cells. This article aims to explore the potential of shifting the paradigm of T1D management from reactive insulin replacement to proactive disease modification, which should open new avenues for preventing and treating T1D, improving the quality of life and long-term outcomes for individuals at risk of T1D.
Collapse
Affiliation(s)
- Mahmoud Nassar
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| | - Ajay Chaudhuri
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| | - Husam Ghanim
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| | - Paresh Dandona
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| |
Collapse
|
11
|
Kennedy EC, Hawkes CP. Approaches to Measuring Beta Cell Reserve and Defining Partial Clinical Remission in Paediatric Type 1 Diabetes. CHILDREN (BASEL, SWITZERLAND) 2024; 11:186. [PMID: 38397298 PMCID: PMC10887271 DOI: 10.3390/children11020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
CONTEXT Type 1 diabetes (T1D) results from the autoimmune T-cell mediated destruction of pancreatic beta cells leading to insufficient insulin secretion. At the time of diagnosis of T1D, there is residual beta cell function that declines over the subsequent months to years. Recent interventions have been approved to preserve beta cell function in evolving T1D. OBJECTIVE The aim of this review is to summarise the approaches used to assess residual beta cell function in evolving T1D, and to highlight potential future directions. METHODS Studies including subjects aged 0 to 18 years were included in this review. The following search terms were used; "(type 1 diabetes) and (partial remission)" and "(type 1 diabetes) and (honeymoon)". References of included studies were reviewed to determine if additional relevant studies were eligible. RESULTS There are numerous approaches to quantifying beta cell reserve in evolving T1D. These include c-peptide measurement after a mixed meal or glucagon stimuli, fasting c-peptide, the urinary c-peptide/creatinine ratio, insulin dose-adjusted haemoglobin A1c, and other clinical models to estimate beta cell function. Other biomarkers may have a role, including the proinsulin/c-peptide ratio, cytokines, and microRNA. Studies using thresholds to determine if residual beta cell function is present often differ in values used to define remission. CONCLUSIONS As interventions are approved to preserve beta cell function, it will become increasingly necessary to quantify residual beta cell function in research and clinical contexts. In this report, we have highlighted the strengths and limitations of the current approaches.
Collapse
Affiliation(s)
- Elaine C Kennedy
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Colin P Hawkes
- Department of Paediatrics and Child Health, University College Cork, T12 DC4A Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
13
|
Ghoneim MA, Gabr MM, El-Halawani SM, Refaie AF. Current status of stem cell therapy for type 1 diabetes: a critique and a prospective consideration. Stem Cell Res Ther 2024; 15:23. [PMID: 38281991 PMCID: PMC10823744 DOI: 10.1186/s13287-024-03636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Over the past decade, there had been progress in the development of cell therapy for insulin-dependent diabetes. Nevertheless, important hurdles that need to be overcome still remain. Protocols for the differentiation of pluripotent stem cells into pancreatic progenitors or fully differentiated β-cells have been developed. The resulting insulin-producing cells can control chemically induced diabetes in rodents and were the subject of several clinical trials. However, these cells are immunogenic and possibly teratogenic for their transplantation, and an immunoisolation device and/or immunosuppression is needed. A growing number of studies have utilized genetic manipulations to produce immune evasive cells. Evidence must be provided that in addition to the expected benefit, gene manipulations should not lead to any unforeseen complications. Mesenchymal stem/stromal cells (MSCs) can provide a viable alternative. MSCs are widely available from many tissues. They can form insulin-producing cells by directed differentiation. Experimentally, evidence has shown that the transplantation of allogenic insulin-producing cells derived from MSCs is associated with a muted allogeneic response that does not interfere with their functionality. This can be explained by the immunomodulatory functions of the MSC subpopulation that did not differentiate into insulin-producing cells. Recently, exosomes derived from naive MSCs have been used in the experimental domain to treat diabetes in rodents with varying degrees of success. Several mechanisms for their beneficial functions were proposed including a reduction in insulin resistance, the promotion of autophagy, and an increase in the T regulatory population. However, euglycemia was not achieved in any of these experiments. We suggest that exosomes derived from β-cells or insulin-producing cells (educated) can provide a better therapeutic effect than those derived from undifferentiated cells.
Collapse
|
14
|
Zang L, Li Y, Hao H, Liu J, Zhang Q, Gao F, Wang H, Chen Y, Gu W, Du J, Meng J, Zhang S, Lyu Z, Dou J, Mu Y. Efficacy of Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Type 2 Diabetes Assessed by Retrospective Continuous Glucose Monitoring. Stem Cells Transl Med 2023; 12:775-782. [PMID: 37738447 PMCID: PMC10726406 DOI: 10.1093/stcltm/szad060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/16/2023] [Indexed: 09/24/2023] Open
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been proved a promising clinical strategy for the treatment of diabetes, and time in range (TIR) has been demonstrated a new metric of glycemic control links to diabetes complications. To further assess the therapeutic effect of UC-MSCs on TIR, a phase II study investigating the efficacy of UC-MSCs in Chinese adults with type 2 diabetes (T2D) assessed by retrospective continuous glucose monitoring (CGM) was conducted. In this randomized and placebo-controlled trial, a total of 73 patients were randomly assigned to receive intravenous infusion of UC-MSCs (n = 37) or placebo (n = 36) 3 times at 4-week intervals and followed up for 48 weeks. The primary endpoint was the changes in TIR and glycosylated hemoglobin (HbA1c). TIR and HbA1c were both significantly improved in UC-MSCs and placebo groups after 48 weeks of therapy compared with baseline. Compared with placebo group, UC-MSCs group exhibited more pronounced changes at 9 and 48 weeks from baseline in TIR (26.54 vs. 15.84 and 21.36 vs. 6.32) and HbA1c (-1.79 vs. -0.96 and -1.36 vs. -0.51). More patients in UC-MSCs group achieved the glycemic control target of TIR ≥ 70% and HbA1c < 7% at 9 and 48 weeks than in placebo group (59.5% vs. 27.8% and 43.2% vs. 11.1%). The C-peptide area under the curve (AUCC-pep) was an independent risk factor associated with efficacy in T2D undergoing UC-MSCs intervention. These results illustrate that UC-MSCs administration via intravenous infusion is an effective approach for ameliorating TIR.
Collapse
Affiliation(s)
- Li Zang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fei Gao
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haibin Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulong Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin Du
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junhua Meng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingtao Dou
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Dantas JR, Araujo DB, Silva KR, Souto DL, Pereira MDFC, Raggio LR, Claudio-da Silva C, Couri CE, Maiolino A, Rebellato CLK, Daga DR, Senegaglia AC, Brofman PRS, Baptista LS, Oliveira JEPD, Zajdenverg L, Rodacki M. Adipose Tissue-Derived Stromal/Stem Cells Transplantation with Cholecalciferol Supplementation in Recent-Onset Type 1 Diabetes Patients: Twelve Months Follow-Up. Horm Metab Res 2023; 55:536-545. [PMID: 37192655 DOI: 10.1055/a-2094-1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To evaluate safety and therapeutic effect along 12 months of allogenic adipose tissue-derived stromal/stem cells (ASCs) transplantation with cholecalciferol (VITD) in patients with recent-onset type 1 diabetes (T1D). Prospective, phase II, open trial, pilot study in which patients with recent onset T1D received ASCs (1xKgx106 cells) and VITD 2000UI/day for 12 months (group 1) and were compared to controls with standard insulin therapy (group 2). Adverse events, C-peptide area under the curve (CPAUC), insulin dose, HbA1c and frequency of FoxP3+ in CD4+ or CD8+ T-cells(flow cytometry) were evaluated at baseline(T0), after 3(T3), 6(T6) and 12 months(T12). Eleven patients completed follow up (7:group 1;4:group 2). Group 1 had lower insulin requirement at T3(0.24±0.18vs0.53±0.23UI/kg,p=0.04), T6(0.24±0.15vs0.66±0.33 UI/kg,p=0.04) and T12(0.39±0.15vs0.74±0.29 UI/Kg,p=0.04).HbA1c was lower at T6 (50.57±8.56vs72.25±10.34 mmol/mol,p=0.01), without differences at T12 (57.14±11.98 in group 1 vs. 73.5±14.57 mmol/min in group 2, p=0.16). CPAUC was not significantly different between groups at T0(p=0.07), higher in group 1 at T3(p=0.04) and T6(p=0.006), but similar at T12(p=0.23). IDAA1c was significantly lower in group 1 than group 2 at T3,T6 and T12 (p=0.006, 0.006 and 0.042, respectively). IDDA1c was inversely correlated to FoxP3 expression in CD4 and CD8+ T cells at T6 (p<0.001 and p=0.01, respectively). In group 1, one patient had recurrence of a benign teratoma that was surgically removed, not associated to the intervention. ASCs with VITD without immunosuppression were safe and associated lower insulin requirements, better glycemic control, and transient better pancreatic function in recent onset T1D, but the potential benefits were not sustained.
Collapse
Affiliation(s)
- Joana R Dantas
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Batista Araujo
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Histology and Embryology Departament, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Lopes Souto
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luiz Ronir Raggio
- Institute of Public Health Studies, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos Eduardo Couri
- Internal Medicine, Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirao Preto, Brazil
| | - Angelo Maiolino
- Hematology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debora Regina Daga
- Core Cell Technology, Pontifical Catholic University of Parana, Curitiba, Brazil
| | | | | | - Leandra S Baptista
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Center for Biological Research (Numpex-Bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lenita Zajdenverg
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melanie Rodacki
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Mikłosz A, Chabowski A. Adipose-derived Mesenchymal Stem Cells Therapy as a new Treatment Option for Diabetes Mellitus. J Clin Endocrinol Metab 2023; 108:1889-1897. [PMID: 36916961 PMCID: PMC10348459 DOI: 10.1210/clinem/dgad142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/01/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The worldwide increase in the prevalence of diabetes mellitus has raised the demand for new therapeutic strategies targeting diabetic symptoms and its chronic complications. Among different treatment options for diabetes, adipose-derived mesenchymal stem cells (ADMSCs) therapy attract the most attention. The therapeutic effects of ADMSCs are based primarily on their paracrine release of immunomodulatory, anti-inflammatory, and trophic factors. Animal models of diabetes as well as human clinical trials have shown that ADMSCs can effectively facilitate endogenous β cell regeneration, preserve residual β cell mass, reduce islet graft rejection, regulate the immune system, and ultimately improve insulin sensitivity or ameliorate insulin resistance in peripheral tissues. Nevertheless, transplantation of mesenchymal stem cells is associated with certain risks; therefore recently much attention has been devoted to ADMSCs derivatives, such as exosomes or conditioned media, as therapeutic agents for the treatment of diabetes. Compared to ADMSCs, cell-free therapy has even better therapeutic potential. This narrative review summarizes recent outcomes and molecular mechanisms of ADMSCs action in the treatment for both type 1 DM and type 2 DM, as well as shows their feasibility, benefits, and current limitations.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
18
|
Zhang J, Zheng Y, Huang L, He J. Research Progress on Mesenchymal Stem Cells for the Treatment of Diabetes and Its Complications. Int J Endocrinol 2023; 2023:9324270. [PMID: 37143697 PMCID: PMC10151724 DOI: 10.1155/2023/9324270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease that threatens human health. Although many drugs are available to treat DM, various complications caused by DM are unavoidable. As an emerging treatment for DM, mesenchymal stem cells (MSCs) have shown many advantages and are gradually gaining public attention. This review summarizes the clinical studies on the use of MSCs to treat DM and the potential mechanisms of complications such as pancreatic dysfunction, cardiovascular lesions, renal lesions, neurological lesions, and trauma repair. This review focuses on the research progress on MSC-mediated secretion of cytokines, improvements in the microenvironment, repair of tissue morphology, and related signaling pathways. At present, the sample sizes in clinical studies of MSCs in treating DM are small, and there is a lack of standardized quality control systems in the preparation, transportation, and infusion methods, so we need to conduct more in-depth studies. In conclusion, MSCs have shown superior potential for use in the treatment of DM and its complications and will hopefully become a novel therapeutic approach in the future.
Collapse
Affiliation(s)
- Jiarui Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650000, Yunnan, China
| | - Yongqin Zheng
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jingbi Road, Kunming 650000, Yunnan, China
| | - Lichenlu Huang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650000, Yunnan, China
| | - Jundong He
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650000, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jingbi Road, Kunming 650000, Yunnan, China
| |
Collapse
|
19
|
Nagy G, Szekely TE, Somogyi A, Herold M, Herold Z. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes 2022; 13:835-850. [PMID: 36312000 PMCID: PMC9606789 DOI: 10.4239/wjd.v13.i10.835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
It has been 100 years since the first successful clinical use of insulin, yet it remains the only treatment option for type 1 diabetes mellitus (T1DM) patients. Advances in diabetes care, such as insulin analogue therapies and new devices, including continuous glucose monitoring with continuous subcutaneous insulin infusion have improved the quality of life of patients but have no impact on the pathogenesis of the disease. They do not eliminate long-term complications and require several lifestyle sacrifices. A more ideal future therapy for T1DM, instead of supplementing the insufficient hormone production (a consequence of β-cell destruction), would also aim to stop or slow down the destructive autoimmune process. The discovery of the autoimmune nature of type 1 diabetes mellitus has presented several targets by which disease progression may be altered. The goal of disease-modifying therapies is to target autoimmune mechanisms and prevent β-cell destruction. T1DM patients with better β-cell function have better glycemic control, reduced incidence of long-term complications and hypoglycemic episodes. Unfortunately, at the time symptomatic T1DM is diagnosed, most of the insulin secreting β cells are usually lost. Therefore, to maximize the salvageable β-cell mass by disease-modifying therapies, detecting autoimmune markers in an early, optimally presymptomatic phase of T1DM is of great importance. Disease-modifying therapies, such as immuno- and regenerative therapies are expected to take a relevant place in diabetology. The aim of this article was to provide a brief insight into the pathogenesis and course of T1DM and present the current state of disease-modifying therapeutic interventions that may impact future diabetes treatment.
Collapse
Affiliation(s)
- Geza Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Tekla Evelin Szekely
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| |
Collapse
|
20
|
Zhang W, Ling Q, Wang B, Wang K, Pang J, Lu J, Bi Y, Zhu D. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes. Stem Cell Res Ther 2022; 13:406. [PMID: 35941696 PMCID: PMC9358877 DOI: 10.1186/s13287-022-02974-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs) in type 1 diabetes (T1D) has been demonstrated in both preclinical and clinical studies. MSCs that have been used in research on T1D are derived from various tissue sources, with bone marrow (BM) and umbilical cord (UC) tissues being the most commonly used. However, the influence of tissue origin on the functional properties and therapeutic effects of MSCs in T1D remains unclear. This study aimed to compare the therapeutic efficacy of UC-MSCs and BM-MSCs in a mouse model of T1D as well as in patients with T1D. Methods In non-obese diabetic (NOD) mice, the development of diabetes was accelerated by streptozotocin injections. Thereafter, diabetic mice were randomized and treated intravenously with UC-MSCs, BM-MSCs or phosphate-buffered saline as a control. Blood glucose and serum insulin were measured longitudinally after transplantation. At 14 days post-transplantation, pancreatic tissues were collected to assess insulitis and the β-cell mass. Flow cytometry was performed to evaluate the composition of T lymphocytes in the spleen and pancreatic lymph nodes of the NOD mice. In our retrospective study of patients with T1D, 28 recipients who received insulin therapy alone or a single transplantation of UC-MSCs or BM-MSCs were enrolled. The glycaemic control and β-cell function of the patients during the first year of follow-up were compared. Results In NOD mice, UC-MSC and BM-MSC transplantation showed similar effects on decreasing blood glucose levels and preserving β cells. The regulation of islet autoimmunity was examined, and no significant difference between UC-MSCs and BM-MSCs was observed in the attenuation of insulitis, the decrease in T helper 17 cells or the increase in regulatory T cells. In patients with T1D, MSC transplantation markedly lowered haemoglobin A1c (HbA1c) levels and reduced insulin doses compared to conventional insulin therapy. However, the therapeutic effects were comparable between UC-MSCs and BM-MSCs, and they also exerted similar effects on the endogenous β-cell function in the patients. Conclusion In conclusion, both UC-MSCs and BM-MSCs exhibited comparable therapeutic effects on improving glycaemic control and preserving β-cell function in T1D. Considering their abundance and higher cell yields, UC-MSCs appear to be more promising than BM-MSCs in clinical applications. Trial registration NCT02763423. Registered on May 5, 2016—Retrospectively registered, https://www.clinicaltrials.gov/.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Ling
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Clinical Stem Cell Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Kai Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jianbo Pang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Lu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
21
|
Jayasinghe M, Prathiraja O, Perera PB, Jena R, Silva MS, Weerawarna P, Singhal M, Kayani AMA, Karnakoti S, Jain S. The Role of Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes. Cureus 2022; 14:e27337. [PMID: 36042996 PMCID: PMC9414788 DOI: 10.7759/cureus.27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic disease characterized by inadequate or absent insulin production due to the autoimmune destruction of beta (β) cells in the pancreas. It was once called "juvenile diabetes" since the disease frequently occurs in children, but it can also develop in adults. According to the International Diabetes Federation, an estimated 700 million adults will suffer from diabetes by 2045. Although the exact cause of diabetes remains unknown, it is hypothesized that genetic factors, environmental factors, and exposure to certain viruses play a role in the development of T1D. To date, exogenous insulin is the most common treatment for T1D. However, it is not a cure for the disease. Islet cell transplantation and pancreatic transplantation are two additional treatments that have gained popularity in recent years, but their clinical application may be limited by the need for high doses of immunosuppressants, the rarity of human cadaveric islets, and the need for extensive surgery in pancreatic transplantation. Mesenchymal stem cells (MSCs) are a highly promising novel treatment for T1D and their discovery has advanced biological sciences by allowing for modification of cell fate and the development of higher-order cellular structures. They play an essential role in lowering levels of fasting blood sugar, hemoglobin A1c, and C-peptide, and in treating microvascular complications associated with T1D. However, some of the disadvantages of its use in clinical practice are limited to its method of collection, proliferation rate, cell activity with age, and the risk of tumour formation identified in some studies. Large-scale studies are required to discover the mechanism of action of MSCs after administration as well as the optimal route, dose, and timing to maximize the benefits to patients. This article focuses primarily on the role of MSCs in the treatment of T1D and compares the feasibility, benefits, and drawbacks of MSCs in the treatment of T1D.
Collapse
|
22
|
Qu J, Liu Z, Li L, Zou Z, He Z, Zhou L, Luo Y, Zhang M, Ye J. Efficacy and Safety of Stem Cell Therapy in Children With Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Front Pediatr 2022; 10:897398. [PMID: 35601435 PMCID: PMC9114801 DOI: 10.3389/fped.2022.897398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
AIM There is insufficient evidence regarding the efficacy and safety of stem cell therapy for autism spectrum disorders. We performed the first meta-analysis of stem cell therapy for autism spectrum disorders in children to provide evidence for clinical rehabilitation. METHODS The data source includes PubMed/Medline, Web of Science, EMBASE, Cochrane Library and China Academic Journal, from inception to 24th JULY 2021. After sifting through the literature, the Cochrane tool was applied to assess the risk of bias. Finally, we extracted data from these studies and calculated pooled efficacy and safety. RESULTS 5 studies that met the inclusion criteria were included in current analysis. Meta-analysis was performed using rehabilitation therapy as the reference standard. Data showed that the Childhood Autism Rating Scale score of stem cell group was striking lower than the control group (WMD: -5.96; 95%CI [-8.87, -3.06]; p < 0.0001). The Clinical Global Impression score consolidated effect size RR = 1.01, 95%CI [0.87, 1.18], Z = 0.14 (p = 0.89), the effective rate for The Clinical Global Impression was 62% and 60% in the stem cell group and the control group, respectively. The occurrence events of adverse reactions in each group (RR = 1.55; 95%CI = 0.60 to 3.98; p = 0.36), there was no significant difference in the incidence of adverse reactions between the stem cell group and the control group. CONCLUSIONS The results of this meta-analysis suggested that stem cell therapy for children with autism might be safe and effective. However, the evidence was compromised by the limitations in current study size, lacking standardized injection routes and doses of stem cells, as well as shortages in diagnostic tools and long period follow-up studies. Hence, it calls for more studies to systematically confirm the efficacy and safety of stem cell therapy for children with autism spectrum disorders.
Collapse
Affiliation(s)
- Jiayang Qu
- The First Clinical Medicine College of Gannan Medical University, Ganzhou, China
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine Gannan Medical University, GanZhou, China
| | - Zicai Liu
- School of Rehabilitation Medicine Gannan Medical University, GanZhou, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, GanZhou, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, GanZhou, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, GanZhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, GanZhou, China
| | - Yaolin Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, GanZhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, GanZhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junsong Ye
- The First Clinical Medicine College of Gannan Medical University, Ganzhou, China
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, GanZhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, China
| |
Collapse
|
23
|
Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W, Pineda B, Thangavelu L, Ahmadi SH. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther 2022; 13:101. [PMID: 35255979 PMCID: PMC8900359 DOI: 10.1186/s13287-022-02782-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
The autoimmune diseases are associated with the host immune system, chronic inflammation, and immune reaction against self-antigens, which leads to the injury and failure of several tissues. The onset of autoimmune diseases is related to unbalanced immune homeostasis. Mesenchymal stem cells (MSCs) are multipotent cells which have capability to self-renew and differentiate into various cell types that exert a critical role in immunomodulation and regenerative therapy. Under the certain condition in vitro, MSCs are able to differentiate into multiple lineage such as osteoblasts, adipocytes, and neuron-like cells. Consequently, MSCs have a valuable application in cell treatment. Accordingly, in this review we present the last observations of researches on different MSCs and their efficiency and feasibility in the clinical treatment of several autoimmune disorders including rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, autoimmune liver disease, and Sjogren’s syndrome.
![]()
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation.,Industrial University, Tyumen, Russian Federation
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Benjamin Pineda
- Department of Neuroimmunology, National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez" (INNN), 14269, Mexico City, Mexico
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research ,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Seyed Hossein Ahmadi
- Cellular and Molecular Research Center, School of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| |
Collapse
|
24
|
Bastos TSB, Braga TT, Davanso MR. Vitamin D and Omega-3 Polyunsaturated Fatty Acids in Type 1 Diabetes modulation. Endocr Metab Immune Disord Drug Targets 2022; 22:815-833. [PMID: 34979894 DOI: 10.2174/1871530322666220103114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/15/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease that affects people globally. Usually developed during childhood, T1D is characterized by the destruction of pancreatic β-cells due to immune cell attack and the establishment of an inflammatory process. OBJECTIVE The study aimed to investigate the effects of vitamin D through its nuclear receptor and the ω-3 polyunsaturated fatty acids (PUFAs) through their lipid derivatives in T1D modulation. Both components exert anti-inflammatory activity and act directly on cells of the immune system, attenuating the destruction of insulin-producing cells. Furthermore, they lead to a better glycemic level, reducing the need for insulin and a normal immune state, such as C-peptide maintenance. METHOD Presently, our review highlights the significant studies that evaluated the supplementation of vitamin D and ω-3 PUFAs in humans and animal models in the modulation of T1D. CONCLUSION The data collected suggests that supplementation can provide potential benefits, mainly when done early in the diagnosis, since it reduces the need for insulin and the risk of complications generated by the disease.
Collapse
Affiliation(s)
| | - Tárcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba; Brazil
- Graduate Program in Biosciences and Biotechnology, Institute Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| | | |
Collapse
|
25
|
Liang RY, Zhang KL, Chuang MH, Lin FH, Chen TC, Lin JN, Liang YJ, Li YA, Chen CH, Wong PLJ, Lin SZ, Lin PC. A One-Step, Monolayer Culture and Chemical-Based Approach to Generate Insulin-Producing Cells From Human Adipose-Derived Stem Cells to Mitigate Hyperglycemia in STZ-Induced Diabetic Rats. Cell Transplant 2022; 31:9636897221106995. [PMID: 36002988 PMCID: PMC9421045 DOI: 10.1177/09636897221106995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The global population of individuals afflicted with diabetes mellitus has been increasing year by year, and this disease poses a serious threat to human health as well as the economies worldwide. Pancreatic or islet transplantations provide one of the most effective and long-term therapies available to treat diabetes, but the scarcity and quality of pancreatic islets limit their use in treatments. Here, we report the development of a one-step, monolayer culture, and chemical-based protocol that efficiently mediates the differentiation of human adipose-derived stem cells (hADSCs) into insulin-producing cells (IPCs). Our data indicate that hADSCs in monolayer culture that are allowed to differentiate into IPCs are superior to those in suspension cultures with respect to insulin secretion capacity (213-fold increase), cell viability (93.5 ± 3.27% vs. 41.67 ± 13.17%), and response to glucose stimulation. Moreover, the expression of genes associated with pancreatic lineage specification, such as PDX1, ISL1, and INS (encoding insulin), were expressed at significantly higher levels during our differentiation protocol (6-fold for PDX1 and ISL1, 11.5-fold for INS). Importantly, in vivo studies demonstrated that transplantation with IPCs significantly mitigated hyperglycemia in streptozotocin-induced diabetic rats. Our results indicate that this one-step, rapid protocol increases the efficiency of IPC generation and that the chemical-based approach for IPC induction may reduce safety concerns associated with the use of IPCs for clinical applications, thereby providing a safe and effective cell-based treatment for diabetes.
Collapse
Affiliation(s)
- Ruei-Yue Liang
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
- Ruei-Yue Liang, Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan.
| | - Kai-Ling Zhang
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Ming-Hsi Chuang
- Department of Technology Management, Chung Hua University, Hsinchu, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Chien Chen
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhih-Ni Lin
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Jyun Liang
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-An Li
- Department of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hung Chen
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Peggy Leh Jiunn Wong
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Po-Cheng Lin
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| |
Collapse
|
26
|
Wan XX, Zhang DY, Khan MA, Zheng SY, Hu XM, Zhang Q, Yang RH, Xiong K. Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement. Front Endocrinol (Lausanne) 2022; 13:859638. [PMID: 35370989 PMCID: PMC8972968 DOI: 10.3389/fendo.2022.859638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic β-cells, leading to the destruction of insulitis-related islet β-cells. Islet β-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of β-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of β-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet β-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet β-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yi Zhang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Sheng-Yuan Zheng
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Kun Xiong, ; Rong-Hua Yang,
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- *Correspondence: Kun Xiong, ; Rong-Hua Yang,
| |
Collapse
|
27
|
Wang LT, Liu KJ, Sytwu HK, Yen ML, Yen BL. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: Use of cell-free products and human pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Transl Med 2021; 10:1288-1303. [PMID: 34008922 PMCID: PMC8380447 DOI: 10.1002/sctm.21-0021] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell therapy (MSCT) for immune and inflammatory diseases continues to be popular based on progressive accumulation of preclinical mechanistic evidence. This has led to further expansion in clinical indications from graft rejection, autoimmune diseases, and osteoarthritis, to inflammatory liver and pulmonary diseases including COVID‐19. A clear trend is the shift from using autologous to allogeneic MSCs, which can be immediately available as off‐the‐shelf products. In addition, new products such as cell‐free exosomes and human pluripotent stem cell (hPSC)‐derived MSCs are exciting developments to further prevalent use. Increasing numbers of trials have now published results in which safety of MSCT has been largely demonstrated. While reports of therapeutic endpoints are still emerging, efficacy can be seen for specific indications—including graft‐vs‐host‐disease, strongly Th17‐mediated autoimmune diseases, and osteoarthritis—which are more robustly supported by mechanistic preclinical evidence. In this review, we update and discuss outcomes in current MSCT clinical trials for immune and inflammatory disease, as well as new innovation and emerging trends in the field.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan, Republic of China.,Department & Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, NHRI, Zhunan, Taiwan, Republic of China
| |
Collapse
|