1
|
Guo L, Wang S, Lian C, He L. Expression and molecular characterization of an intriguing hyaluronan synthase (HAS) from the symbiont " Candidatus Mycoplasma liparidae" in snailfish. PeerJ 2025; 13:e19253. [PMID: 40297469 PMCID: PMC12036578 DOI: 10.7717/peerj.19253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Hyaluronan synthases (HASs) are ubiquitous in living organisms, and the hyaluronic acid (HA) synthesized by them are important to their body and well used in medicine, cosmetics and other fields. HAS from deep-sea creatures has not yet been explored before. The study aims to analyse the characteristics and enzyme kinetics of a novel hyaluronan synthase derived from the symbiont "Candidatus Mycoplasma liparidae" found in deep-sea snailfish (snHAS). Methodology snHAS was over-expressed using His 6 as tag in the study. The sequence alignment was conducted by Cluster W and then the phylogenetic analyse of HASs was performed by Mega 6.0 to investigate the position of snHAS during evolution. K m and V max were detected to study the enzyme kinetics of snHAS wildtype and its mutant. The molecular weight of HA was evaluated by high performance gel permeation chromatography (HPGPC). The cardiolipin was added to investigate whether it had a promoting effect on the snHAS. Results The length of snHAS was 933 bp with an open reading frame (ORF) of 310 amino acids. Unlike other repoted HASs, snHAS had no transmembrane region and was not classified into the currently known Class I or Class II. snHAS could synthesize hyaluronan with lower molecular weights using the substrates of uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) and uridine-diphosphate-glucuronic acid (UDP-GlcA) in vitro. The K m values of snHAS were 258 ± 45 µM and 39 ± 5 µM for UDP-GlcNAc and UDP-GlcA, respectively, much lower than those from mice (K m for UDP-GlcA: 55 ± 5 µM; K m for UDP-GlcNAc: 870 ± 60 µM). The k cat/K m values of snHAS were 163.5 s-1 mM-1 and 8.08 s-1 mM-1 for UDP-GlcA and UDP-GlcNAc, respectively. Furthermore, the activity of snHAS was independent of cardiolipin. Conclusions snHAS was a novel HAS based on the characteristics of the animo acid sequence, which could produce low molecular weight of HA with high efficiency. This provides a molecular basis for the biosynthesis of low molecular weight of HA.
Collapse
Affiliation(s)
- Lulu Guo
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Shaolu Wang
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Chunang Lian
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Lisheng He
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
2
|
Arrington HB, Lee SG, Lee JH, Covi JA. Assessment of the cyst wall and surface microbiota in dormant embryos of the Antarctic calanoid copepod, Boeckella poppei. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70035. [PMID: 39603712 PMCID: PMC11602222 DOI: 10.1111/1758-2229.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Embryos of zooplankton from inland waters and estuaries can remain viable for years in an extreme state of metabolic suppression. How these embryos resist microbial attack with limited metabolic capacity for immune defence or repair is unknown. As a first step in evaluating resistance to microbial attack in dormant zooplankton, surface colonization of the Antarctic freshwater copepod, Boeckella poppei, was evaluated. Scanning electron micrographs demonstrate the outer two layers of a five-layered cyst wall in B. poppei fragment and create a complex environment for microbial colonization. By contrast, the third layer remains undamaged during years of embryo storage in native sediment. The absence of damage to the third layer indicates that it is resistant to degradation by microbial enzymes. Scanning electron microscopy and microbiome analysis using the 16S ribosomal subunit gene and internal transcribed spacer (ITS) region demonstrate the presence of a diverse microbial community on the embryo surface. Coverage of the embryos with microbial life varies from a sparse population with individual microbes to complete coverage by a thick biofilm. Extracellular polymeric substance binds debris and provides a structural element for the microbial community. Frequent observation of bacterial fission indicates that the biofilm is viable in stored sediments.
Collapse
Affiliation(s)
- Hunter B. Arrington
- Department of Biology and Marine BiologyThe University of North Carolina at WilmingtonWilmingtonNorth CarolinaUSA
| | - Sung Gu Lee
- Division of Polar Life ScienceKorea Polar Research Institute (KOPRI)IncheonKorea
- Department of Polar SciencesUniversity of Science and TechnologyIncheonKorea
| | - Jun Hyuck Lee
- Division of Polar Life ScienceKorea Polar Research Institute (KOPRI)IncheonKorea
- Department of Polar SciencesUniversity of Science and TechnologyIncheonKorea
| | - Joseph A. Covi
- Department of Biology and Marine BiologyThe University of North Carolina at WilmingtonWilmingtonNorth CarolinaUSA
| |
Collapse
|
3
|
Lv X, Li S, Yu Y, Zhang X, Li F. Crustin Defense against Vibrio parahaemolyticus Infection by Regulating Intestinal Microbial Balance in Litopenaeus vannamei. Mar Drugs 2023; 21:md21020130. [PMID: 36827171 PMCID: PMC9963704 DOI: 10.3390/md21020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Crustins are a kind of antimicrobial peptide (AMP) that exist in crustaceans. Some crustins do not have direct antimicrobial activity but exhibit in vivo defense functions against Vibrio. However, the underlying molecular mechanism is not clear. Here, the regulatory mechanism was partially revealed along with the characterization of the immune function of a type I crustin, LvCrustin I-2, from Litopenaeus vannamei. LvCrustin I-2 was mainly detected in hemocytes, intestines and gills and was apparently up-regulated after Vibrio parahaemolyticus infection. Although the recombinant LvCrustin I-2 protein possessed neither antibacterial activity nor agglutinating activity, the knockdown of LvCrustin I-2 accelerated the in vivo proliferation of V. parahaemolyticus. Microbiome analysis showed that the balance of intestinal microbiota was impaired after LvCrustin I-2 knockdown. Further transcriptome analysis showed that the intestinal epithelial barrier and immune function were impaired in shrimp after LvCrustin I-2 knockdown. After removing the intestinal bacteria via antibiotic treatment, the phenomenon of impaired intestinal epithelial barrier and immune function disappeared in shrimp after LvCrustin I-2 knockdown. This indicated that the impairment of the shrimp intestine after LvCrustin I-2 knockdown was caused by the dysbiosis of the intestinal microbiota. The present data suggest that crustins could resist pathogen infection through regulating the intestinal microbiota balance, which provides new insights into the functional mechanisms of antimicrobial peptides during pathogen infection.
Collapse
Affiliation(s)
- Xinjia Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (F.L.)
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (S.L.); (F.L.)
| |
Collapse
|
4
|
González R, Henríquez-Castillo C, Lohrmann KB, Romero MS, Ramajo L, Schmitt P, Brokordt K. The Gill Microbiota of Argopecten purpuratus Scallop Is Dominated by Symbiotic Campylobacterota and Upwelling Intensification Differentially Affects Their Abundance. Microorganisms 2022; 10:2330. [PMID: 36557583 PMCID: PMC9781997 DOI: 10.3390/microorganisms10122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Despite the great importance of gills for bivalve mollusks (respiration, feeding, immunity), the microbiota associated with this tissue has barely been characterized in scallops. The scallop Argopecten purpuratus is an important economic resource that is cultivated in areas where coastal upwelling is intensifying by climate change, potentially affecting host-microbiota interactions. Thus, we first characterized the bacterial community present in gills from cultivated scallops (by 16S rRNA gene amplicon sequencing) and assessed their stability and functional potential in animals under farm and laboratory conditions. Results showed that under both conditions the gill bacterial community is dominated by the phylum Campylobacterota (57%), which displays a chemoautotrophic potential that could contribute to scallop nutrition. Within this phylum, two phylotypes, namely symbionts A and B, were the most abundant; being, respectively, taxonomically affiliated to symbionts with nutritional functions in mussel gills, and to uncultured bacteria present in coral mucus. Additionally, in situ hybridization and scanning electron microscopy analyses allowed us to detect these symbionts in the gills of A. purpuratus. Given that shifts in upwelling phenology can cause disturbances to ecosystems, affecting bacteria that provide beneficial functions to the host, we further assessed the changes in the abundance of the two symbionts (via qPCR) in response to a simulated upwelling intensification. The exposure to combined decreasing values in the temperature, pH, and oxygen levels (upwelling conditions) favored the dominance of symbiont B over symbiont A; suggesting that symbiont abundances are modulated by these environmental changes. Overall, results showed that changes in the main Campylobacterota phylotypes in response to upwelling intensification could affect its symbiotic function in A. purpuratus under future climate change scenarios. These results provide the first insight into understanding how scallop gill-microbial systems adapt and respond to climate change stressors, which could be critical for managing health, nutrition, and scallop aquaculture productivity.
Collapse
Affiliation(s)
- Roxana González
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| | - Carlos Henríquez-Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo 1781421, Chile
| | - Karin B. Lohrmann
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo 1781421, Chile
| | - María Soledad Romero
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo 1781421, Chile
| | - Laura Ramajo
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo 1781421, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo 1781421, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| |
Collapse
|
5
|
Aubé J, Cambon-Bonavita MA, Velo-Suárez L, Cueff-Gauchard V, Lesongeur F, Guéganton M, Durand L, Reveillaud J. A novel and dual digestive symbiosis scales up the nutrition and immune system of the holobiont Rimicaris exoculata. MICROBIOME 2022; 10:189. [PMID: 36333777 PMCID: PMC9636832 DOI: 10.1186/s40168-022-01380-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In deep-sea hydrothermal vent areas, deprived of light, most animals rely on chemosynthetic symbionts for their nutrition. These symbionts may be located on their cuticle, inside modified organs, or in specialized cells. Nonetheless, many of these animals have an open and functional digestive tract. The vent shrimp Rimicaris exoculata is fueled mainly by its gill chamber symbionts, but also has a complete digestive system with symbionts. These are found in the shrimp foregut and midgut, but their roles remain unknown. We used genome-resolved metagenomics on separate foregut and midgut samples, taken from specimens living at three contrasted sites along the Mid-Atlantic Ridge (TAG, Rainbow, and Snake Pit) to reveal their genetic potential. RESULTS We reconstructed and studied 20 Metagenome-Assembled Genomes (MAGs), including novel lineages of Hepatoplasmataceae and Deferribacteres, abundant in the shrimp foregut and midgut, respectively. Although the former showed streamlined reduced genomes capable of using mostly broken-down complex molecules, Deferribacteres showed the ability to degrade complex polymers, synthesize vitamins, and encode numerous flagellar and chemotaxis genes for host-symbiont sensing. Both symbionts harbor a diverse set of immune system genes favoring holobiont defense. In addition, Deferribacteres were observed to particularly colonize the bacteria-free ectoperitrophic space, in direct contact with the host, elongating but not dividing despite possessing the complete genetic machinery necessary for this. CONCLUSION Overall, these data suggest that these digestive symbionts have key communication and defense roles, which contribute to the overall fitness of the Rimicaris holobiont. Video Abstract.
Collapse
Affiliation(s)
- Johanne Aubé
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Marie-Anne Cambon-Bonavita
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Lourdes Velo-Suárez
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France and Centre Brestois d’Analyse du Microbiote (CBAM), Brest University Hospital, Brest, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Françoise Lesongeur
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Marion Guéganton
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Lucile Durand
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Julie Reveillaud
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
- MIVEGEC, Univ. Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
6
|
Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
8
|
A Type Ib Crustin from Deep-Sea Shrimp Possesses Antimicrobial and Immunomodulatory Activity. Int J Mol Sci 2022; 23:ijms23126444. [PMID: 35742887 PMCID: PMC9223358 DOI: 10.3390/ijms23126444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Crustins are small antimicrobial proteins produced by crustaceans. Of the many reported crustins, very few are from deep sea environments. Crustins are categorized into several types. Recently, the Type I crustin has been further classified into three subtypes, one of which is Type Ib, whose function is unknown. Here, we studied the function of a Type Ib crustin (designated Crus2) identified from a deep-sea crustacean. Crus2 has a whey acidic protein (WAP) domain and a long C-terminal region (named P58). Recombinant Crus2 bound to peptidoglycan (PGN), lipoteichoic acid (LTA), and lipopolysaccharide (LPS), and killed Gram-positive and Gram-negative bacteria by permeabilizing the bacterial cytomembrane. Consistently, Crus2 dramatically attenuated the inflammatory response induced by LPS and LTA. Disruption of the disulfide bonds in the WAP domain abolished the bactericidal ability of Crus2, but had no effect on the bacterial binding ability of Crus2. Deletion of the C-terminal P58 region moderately affected the antimicrobial activity of Crus2 against some bacteria. P58 as a synthesized peptide could bind bacteria and inhibit the bactericidal activity of Crus2. Taken together, these results revealed different roles played by the WAP domain and the P58 region in Type Ib crustin, and provided new insights into the antimicrobial and immunomodulatory functions of crustins.
Collapse
|
9
|
Leinberger J, Milke F, Christodoulou M, Poehlein A, Caraveo-Patiño J, Teske A, Brinkhoff T. Microbial epibiotic community of the deep-sea galatheid squat lobster Munidopsis alvisca. Sci Rep 2022; 12:2675. [PMID: 35177734 PMCID: PMC8854721 DOI: 10.1038/s41598-022-06666-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Life at hydrothermal vent sites is based on chemosynthetic primary producers that supply heterotrophic microorganisms with substrates and generate biomass for higher trophic levels. Often, chemoautotrophs associate with the hydrothermal vent megafauna. To investigate attached bacterial and archaeal communities on deep-sea squat lobsters, we collected ten specimens from a hydrothermal vent in the Guaymas Basin (Gulf of California). All animals were identified as Munidopsis alvisca via morphological and molecular classification, and intraspecific divergence was determined. Amplicon sequencing of microbial DNA and cDNA revealed significant differences between microbial communities on the carapaces of M. alvisca and those in ambient sea water. Major epibiotic bacterial taxa were chemoautotrophic Gammaproteobacteria, such as Thiotrichaceae and Methylococcaceae, while archaea were almost exclusively represented by sequences affiliated with Ca. Nitrosopumilus. In sea water samples, Marine Group II and III archaea and organoheterotrophic Alphaproteobacteria, Flavobacteriia and Planctomycetacia were more dominant. Based on the identified taxa, we assume that main metabolic processes, carried out by M. alvisca epibiota, include ammonia, methane and sulphide oxidation. Considering that M. alvisca could benefit from sulphide detoxification by its epibiota, and that attached microbes are supplied with a stable habitat in proximity to substrate-rich hydrothermal fluids, a mutualistic host-microbe relationship appears likely.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Felix Milke
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Magdalini Christodoulou
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | | | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
10
|
Luo JC, Zhang J, Sun L. A g-Type Lysozyme from Deep-Sea Hydrothermal Vent Shrimp Kills Selectively Gram-Negative Bacteria. Molecules 2021; 26:molecules26247624. [PMID: 34946706 PMCID: PMC8707215 DOI: 10.3390/molecules26247624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
Lysozyme is a key effector molecule of the innate immune system in both vertebrate and invertebrate. It is classified into six types, one of which is the goose-type (g-type). To date, no study on g-type lysozyme in crustacean has been documented. Here, we report the identification and characterization of a g-type lysozyme (named LysG1) from the shrimp inhabiting a deep-sea hydrothermal vent in Manus Basin. LysG1 possesses conserved structural features of g-type lysozymes. The recombinant LysG1 (rLysG1) exhibited no muramidase activity and killed selectively Gram-negative bacteria in a manner that depended on temperature, pH, and metal ions. rLysG1 bound target bacteria via interaction with bacterial cell wall components, notably lipopolysaccharide (LPS), and induced cellular membrane permeabilization, which eventually caused cell lysis. The endotoxin-binding capacity enabled rLysG1 to alleviate the inflammatory response induced by LPS. Mutation analysis showed that the bacterial binding and killing activities of rLysG1 required the integrity of the conserved α3 and 4 helixes of the protein. Together, these results provide the first insight into the activity and working mechanism of g-type lysozyme in crustacean and deep-sea organisms.
Collapse
Affiliation(s)
- Jing-Chang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China;
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-8289-8829
| |
Collapse
|
11
|
Hourdez S, Boidin-Wichlacz C, Jollivet D, Massol F, Rayol MC, Bruno R, Zeppilli D, Thomas F, Lesven L, Billon G, Duperron S, Tasiemski A. Investigation of Capitella spp. symbionts in the context of varying anthropic pressures: First occurrence of a transient advantageous epibiosis with the giant bacteria Thiomargarita sp. to survive seasonal increases of sulfides in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149149. [PMID: 34375231 DOI: 10.1016/j.scitotenv.2021.149149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Capitella spp. is considered as an important ecological indicator of eutrophication due to its high densities in organic-rich, reduced, and sometimes polluted coastal ecosystems. We investigated whether such ability to cope with adverse ecological contexts might be a response to the microorganisms these worms are associated with. In populations from the French Atlantic coast (Roscoff, Brittany), we observed an epibiotic association covering the tegument of 20-30% specimens from an anthropized site while individuals from a reference, non-anthropized site were devoid of any visible epibionts. Using RNAseq, molecular and microscopic analyses, we described and compared the microbial communities associated with the epibiotic versus the non-epibiotic specimens at both locations. Interestingly, data showed that the epibiosis is characterized by sulfur-oxidizing bacteria among which the giant bacterium Thiomargarita sp., to date only described in deep sea habitats. Survey of Capitella combined with the geochemical analysis of their sediment revealed that epibiotic specimens are always found in muds with the highest concentration of sulfides, mostly during the summer. Concomitantly, tolerance tests demonstrated that the acquisition of epibionts increased survival against toxic level of sulfides. Overall, the present data highlight for the first time a peculiar plastic adaptation to seasonal variations of the habitat based on a transcient epibiosis allowing a coastal species to survive temporary harsher conditions.
Collapse
Affiliation(s)
- Stéphane Hourdez
- Observatoire Océanologique de Banyuls-sur-Mer, UMR 8222 CNRS-SU, avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS UMR 7144 'Adaptation et Diversité en Milieux Marins' (AD2M), Team 'Dynamique de la Diversité Marine' (DyDiv), Station biologique de Roscoff, Place G. Teissier, 29680 Roscoff, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maria Claudia Rayol
- Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Daniela Zeppilli
- IFREMER, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France
| | - Frédéric Thomas
- CREEC/CREES, UMR IRD-Université de Montpellier, Montpellier, France
| | - Ludovic Lesven
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, CNRS UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005 Paris, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
12
|
Characteristics of Two Crustins from Alvinocaris longirostris in Hydrothermal Vents. Mar Drugs 2021; 19:md19110600. [PMID: 34822471 PMCID: PMC8626000 DOI: 10.3390/md19110600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Crustins are widely distributed among different crustacean groups. They are characterized by a whey acidic protein (WAP) domain, and most examined Crustins show activity against Gram-positive bacteria. This study reports two Crustins, Al-crus 3 and Al-crus 7, from hydrothermal vent shrimp, Alvinocaris longirostris. Al-crus 3 and Al-crus 7 belong to Crustin Type IIa, with a similarity of about 51% at amino acid level. Antibacterial assays showed that Al-crus 3 mainly displayed activity against Gram-positive bacteria with MIC50 values of 10–25 μM. However, Al-crus 7 not only displayed activity against Gram-positive bacteria but also against Gram-negative bacteria Imipenem-resistant Acinetobacter baumannii, in a sensitive manner. Notably, in the effective antibacterial spectrum, Methicillin-sensitive Staphylococcus aureus, Escherichia coli (ESBLs) and Imipenem-resistant A. baumannii were drug-resistant pathogens. Narrowing down the sequence to the WAP domain, Al-crusWAP 3 and Al-crusWAP 7 demonstrated antibacterial activities but were weak. Additionally, the effects on bacteria did not significantly change after they were maintained at room temperature for 48 h. This indicated that Al-crus 3 and Al-crus 7 were relatively stable and convenient for transportation. Altogether, this study reported two new Crustins with specific characteristics. In particular, Al-crus 7 inhibited Gram-negative imipenem-resistant A. baumannii.
Collapse
|
13
|
Wang Y, Zhang J, Sun Y, Sun L. A Crustin from Hydrothermal Vent Shrimp: Antimicrobial Activity and Mechanism. Mar Drugs 2021; 19:176. [PMID: 33807037 PMCID: PMC8005205 DOI: 10.3390/md19030176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Crustin is a type of antimicrobial peptide and plays an important role in the innate immunity of arthropods. We report here the identification and characterization of a crustin (named Crus1) from the shrimp Rimicaris sp. inhabiting the deep-sea hydrothermal vent in Manus Basin (Papua New Guinea). Crus1 shares the highest identity (51.76%) with a Type I crustin of Penaeus vannamei and possesses a whey acidic protein (WAP) domain, which contains eight cysteine residues that form the conserved 'four-disulfide core' structure. Recombinant Crus1 (rCrus1) bound to peptidoglycan and lipoteichoic acid, and effectively killed Gram-positive bacteria in a manner that was dependent on pH, temperature, and disulfide linkage. rCrus1 induced membrane leakage and structure damage in the target bacteria, but had no effect on bacterial protoplasts. Serine substitution of each of the 8 Cys residues in the WAP domain did not affect the bacterial binding capacity but completely abolished the bactericidal activity of rCrus1. These results provide new insights into the characteristic and mechanism of the antimicrobial activity of deep sea crustins.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- School of Ocean, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|