1
|
Gao N, Wang C, Yu Y, Xie L, Xing Y, Zhang Y, Wang Y, Wu J, Cai Y. LFA-1/ ICAM-1 promotes NK cell cytotoxicity associated with the pathogenesis of ocular toxoplasmosis in murine model. PLoS Negl Trop Dis 2022; 16:e0010848. [PMID: 36206304 PMCID: PMC9581422 DOI: 10.1371/journal.pntd.0010848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/19/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Ocular toxoplasmosis (OT) is one of the most common causes of posterior uveitis. However, the pathogenic mechanisms of OT have not been well elucidated. Here, we used C57BL/6 (B6) mice to establish OT by peroral infection with 20 cysts of the TgCtWh6 strain, and severe ocular damage was observed by histopathological analysis in the eyes of infected mice. RNA-sequencing results showed that infection with T. gondii increased the expression of the NK-mediated cytotoxicity gene pathway at Day 30 after ocular T. gondii infection. Both NK-cell and CD49a+ NK-cell subsets are increased in ocular tissues, and the expression levels of LFA-1 in NK cells and ICAM-1 in the OT murine model were upregulated upon infection. Furthermore, inhibition of the interaction between LFA-1 and ICAM-1 with lifitegrast, a novel small molecule integrin antagonist, inhibited the protein expression of LFA-1 and ICAM-1 in murine OT and NK cells, improved the pathology of murine OT and influenced the secretion of cytokines in the OT murine model. In conclusion, the interaction between LFA-1 and ICAM-1 plays a role in the early regulation of the CD49a+ NK-cell proportion in an OT murine model. LFA-1/ ICAM-1 may be a key molecule in the pathogenesis of OT, and may provide new insights for potential immunotherapy.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Chong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Yiran Yu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Linding Xie
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Yien Xing
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Yuan Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Yanling Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Jianjun Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- * E-mail: (J W); (Y C)
| | - Yihong Cai
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
- * E-mail: (J W); (Y C)
| |
Collapse
|
2
|
Mortlock RD, Wu C, Potter EL, Abraham DM, Allan DSJ, Hong SG, Roederer M, Dunbar CE. Tissue Trafficking Kinetics of Rhesus Macaque Natural Killer Cells Measured by Serial Intravascular Staining. Front Immunol 2022; 12:772332. [PMID: 35095846 PMCID: PMC8790741 DOI: 10.3389/fimmu.2021.772332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
The in vivo tissue distribution and trafficking patterns of natural killer (NK) cells remain understudied. Animal models can help bridge the gap, and rhesus macaque (RM) primates faithfully recapitulate key elements of human NK cell biology. Here, we profiled the tissue distribution and localization patterns of three NK cell subsets across various RM tissues. We utilized serial intravascular staining (SIVS) to investigate the tissue trafficking kinetics at steady state and during recovery from CD16 depletion. We found that at steady state, CD16+ NK cells were selectively retained in the vasculature while CD56+ NK cells had a shorter residence time in peripheral blood. We also found that different subsets of NK cells had distinct trafficking kinetics to and from the lymph node as well as other lymphoid and non-lymphoid tissues. Lastly, we found that following administration of CD16-depleting antibody, CD16+ NK cells and their putative precursors retained a high proportion of continuously circulating cells, suggesting that regeneration of the CD16 NK compartment may take place in peripheral blood or the perivascular compartments of tissues.
Collapse
Affiliation(s)
- Ryland D Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Diana M Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - David S J Allan
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Zhang C, Wang H, Li J, Hou X, Li L, Wang W, Shi Y, Li D, Li L, Zhao Z, Li L, Aji T, Lin R, Shao Y, Vuitton DA, Tian Z, Sun H, Wen H. Involvement of TIGIT in Natural Killer Cell Exhaustion and Immune Escape in Patients and Mouse Model With Liver Echinococcus multilocularis Infection. Hepatology 2021; 74:3376-3393. [PMID: 34192365 DOI: 10.1002/hep.32035] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Alveolar echinococcosis (AE) is a lethal helminthic liver disease caused by persistent infection with Echinococcus multilocularis. Although more attention has been paid to the immunotolerance of T cells caused by E. multilocularis infection, the role of natural killer (NK) cell, a critical player in liver immunity, is seldom studied. APPROACH AND RESULTS Here, we observed that NK cells from the blood and closed liver tissue (CLT) of AE patients expressed a higher level of inhibitory receptor TIGIT and were functionally exhausted with a lower expression of granzyme B, perforin, interferon-gamma (IFN-γ), and TNF-α. Addition of anti-TIGIT (T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain) monoclonal antibody into AE patients' peripheral blood mononuclear cell culture significantly enhanced the synthesis of IFN-γ and TNF-α by NK cells, indicating the reversion of exhausted NK cells by TIGIT blockade. In the mouse model of E. multilocularis infection, liver and splenic TIGIT+ NK cells progressively increased dependent of infection dosage and timing and were less activated and less degranulated with lower cytokine secretion. Furthermore, TIGIT deficiency or blockade in vivo inhibited liver metacestode growth, reduced liver injury, and increased the level of IFN-γ produced by liver NK cells. Interestingly, NK cells from mice with persistent chronic infection expressed a higher level of TIGIT compared to self-healing mice. To look further into the mechanisms, more regulatory CD56bright and murine CD49a+ NK cells with higher TIGIT expression existed in livers of AE patients and mice infected with E. multilocularis, respectively. They coexpressed higher surface programmed death ligand 1 and secreted more IL-10, two strong inducers to mediate the functional exhaustion of NK cells. CONCLUSIONS Our results indicate that inhibitory receptor TIGIT is involved in NK cell exhaustion and immune escape from E. multilocularis infection.
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Xinling Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Linghui Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Yang Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Dewei Li
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Liang Li
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre for Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhibin Zhao
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Li
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Tuerganaili Aji
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre for Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- WHO Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Bourgogne Franche-Comté (EA 3181) and University Hospital, Besançon, France
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|