1
|
Sun Q, Zhao H, Zhang X, Zhang S, He Z, Wang G, Jiang H, Xuan A, Li X. Efficacy Analysis of Hypofractionated Radiotherapy for Oligometastatic Tumors: A Retrospective Study. Technol Cancer Res Treat 2025; 24:15330338241310155. [PMID: 39819190 PMCID: PMC11742154 DOI: 10.1177/15330338241310155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Metastasis remains a major cause of death among patients with malignant tumors. Radiotherapy is one of the main modalities of cancer treatment. The rapid development of radiotherapy technology has enabled the widespread application of hypofractionated radiotherapy (HFRT) in clinical practice. This study aimed to evaluate the effect of HFRT on the survival and safety of patients with oligometastatic tumors. METHODS We conducted a retrospective study that involved 65 patients with well-controlled primary tumors and 1-5 metastatic foci treated at the study site between January 2020 and December 2022. Patients were aged >18 years and had a ≥ 6-month life expectancy. The patients received standard treatments plus HFRT for all metastatic foci. The dose fractionation regimen was adjusted according to the location and size of the patient's metastatic foci. The planning gross tumor volume of HFRT was 82.93 cm3 (range: 10.12-562.80 cm3), and the radiation dose range was 20 Gy/5 F-60 Gy/15 F. Progression-free survival (PFS), overall survival (OS), local control rates, and incidence of adverse events of the patients were observed. RESULTS Among the 65 patients, the median follow-up time, PFS, and OS were 26 months (95% CI: 0.80-37.50), 15 months (95% CI: 9.36-20.64), and 28 months (95% CI: 16.71-39.29), respectively. The 1- and 2-year PFS were 53.8% and 40.0%, respectively, while the 1- and 2-year OS rates were 73.8% and 56.9%, respectively. In total, 13.8%, 55.4%, 20.0%, and 13.8% of patients showed complete response, partial response, stable disease, and progressive disease, respectively. Four patients developed grade 3 or worse adverse events, and no treatment-related deaths occurred. CONCLUSIONS HFRT showed favorable clinical efficacy and safety in patients with oligometastatic tumors, generally achieving a good OS rate. Further randomized trials should be conducted.
Collapse
Affiliation(s)
- Qian Sun
- Jinan University, Guangzhou, Guangdong, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Hanqing Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xianwen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Suli Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zelai He
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Gengming Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Aili Xuan
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xianming Li
- Jinan University, Guangzhou, Guangdong, China
- Department of Radiation Oncology, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, Shenzhen, China
| |
Collapse
|
2
|
Surgo A, Davì V, Ciliberti MP, Carbonara R, Caliandro M, Di Guglielmo FC, Sasso N, Calbi R, Gentile MA, Talienti T, Bruno I, Troia M, Bonaparte I, Ludovico GM, Surico G, Fiorentino A. Metabolic Complete Response of Metastatic Oncogene-Negative, PDL1-Negative Non-Small Cell Lung Cancer After Chemo-Immunotherapy and Radiotherapy: A Case Report. Curr Oncol 2024; 31:8118-8126. [PMID: 39727721 DOI: 10.3390/curroncol31120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
A 71-year-old male ex-smoker presented in October 2021 to our department with a brain and bone metastatic adenocarcinoma NSCLC. PDL1, ROS, EGFR, and ALK were negative. He underwent stereotactic radiotherapy for brain metastases. In November 2021, he started a chemotherapy (CHT) regimen with cisplatin (75 mg/m2 every 21 days) and pemetrexed (500 mg/m2 every 21 days), and ICI with Atezolizumab (1200 mg every 21 days). In July 2022, RT to the lung tumor and mediastinal nodal was performed with a total dose of 45 Gy in 15 fractions. He continued with immunotherapy until December 2022, when a grade 3-4 toxicity from immunotherapy was observed (hypothyroidism, psoriasis, and cystitis). He achieved a complete clinical response to the therapy. To date, the patient is alive, with a complete metabolic response, without treatment at 37 months from diagnosis.
Collapse
Affiliation(s)
- Alessia Surgo
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, BA, Italy
| | - Valerio Davì
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Maria Paola Ciliberti
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Roberta Carbonara
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Morena Caliandro
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | | | - Nicola Sasso
- Medical Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Roberto Calbi
- Radiology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Maria Annunziata Gentile
- Radiology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Tiziana Talienti
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Isabella Bruno
- Nuclear Medicine Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Michele Troia
- Pathology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Ilaria Bonaparte
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Giuseppe Mario Ludovico
- Urology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Giammarco Surico
- Medical Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, BA, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, BA, Italy
| |
Collapse
|
3
|
Li Y, Long Y, Ge X, Zhang P, Li T, Wu L, Fan H, Du Z, Liu Q, Hu Y. Radiation-Induced Tumor-Derived Extracellular Vesicles Combined with Tyrosine Kinase Inhibitors: An Effective and Safe Therapeutic Approach for Lung Adenocarcinoma with EGFR19Del. Vaccines (Basel) 2024; 12:1412. [PMID: 39772073 PMCID: PMC11680254 DOI: 10.3390/vaccines12121412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response. Methods To exploit the role of EVs in the delivery of tumor antigens, we formulated a therapeutic strategy that involves the use of radiation-induced tumor-derived EVs (TEXs) loaded onto dendritic cells (DCs) as a kind of vaccine in conjunction with EGFR TKIs and assessed the efficacy and safety of this approach in the treatment of EGFRm NSCLC. Results In our study, we characterized the release of immunogens as influenced by various modes of cell death, examining the impact of different levels of cell death under diverse irradiation modalities. Our results demonstrated that a radiation mode of 6Gy*3f exhibited the most promising potential to stimulate anti-tumor immune responses. This radiotherapy fraction, combined with TKIs, showed promising results in a tumor-bearing mouse model with an EGFR mutation, although there is a risk of radiation-associated pneumonitis. Furthermore, we found that 6Gy*3f-TEXs in vitro activate DCs and promote T cell proliferation as well as cytotoxic T lymphocyte-mediated tumor cell destruction. The administration of EGFR-TKIs combined DCs loaded with 6Gy*3f-TEXs exhibited the potential to inhibit tumor growth and mitigate the risk of pneumonitis. Together, the research shows that TEXs from high-dose fractionation radiation can mature DCs and boost the killing of cytotoxic T lymphocytes. Combining these DC vaccines with Osimertinib offers a promising and safe treatment for EGFRm NSCLC.
Collapse
Affiliation(s)
- Yao Li
- Medical School of Chinese People’s Liberation Army (PLA), Beijing 100000, China; (Y.L.); (X.G.); (P.Z.); (T.L.); (H.F.)
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
| | - Yaping Long
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing 100000, China;
| | - Xiangwei Ge
- Medical School of Chinese People’s Liberation Army (PLA), Beijing 100000, China; (Y.L.); (X.G.); (P.Z.); (T.L.); (H.F.)
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
| | - Pengfei Zhang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing 100000, China; (Y.L.); (X.G.); (P.Z.); (T.L.); (H.F.)
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
| | - Tao Li
- Medical School of Chinese People’s Liberation Army (PLA), Beijing 100000, China; (Y.L.); (X.G.); (P.Z.); (T.L.); (H.F.)
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
| | - Liangliang Wu
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing 100000, China;
| | - Hao Fan
- Medical School of Chinese People’s Liberation Army (PLA), Beijing 100000, China; (Y.L.); (X.G.); (P.Z.); (T.L.); (H.F.)
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
| | - Zhijuan Du
- Medical School of Chinese People’s Liberation Army (PLA), Beijing 100000, China; (Y.L.); (X.G.); (P.Z.); (T.L.); (H.F.)
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
| | - Qiaowei Liu
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing 100000, China;
| | - Yi Hu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing 100000, China; (Y.L.); (X.G.); (P.Z.); (T.L.); (H.F.)
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, China;
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing 100000, China;
| |
Collapse
|
4
|
Heesen P, Di Lonardo M, Ciobanu-Caraus O, Schelling G, Zwahlen D, Bode-Lesniewska B, Glanzmann C, Studer G, Fuchs B. Ultrahypofractionated Versus Normofractionated Preoperative Radiotherapy for Soft Tissue Sarcoma: A Multicenter, Prospective Real-World-Time Phase 2 Clinical Trial. Cancers (Basel) 2024; 16:4063. [PMID: 39682249 DOI: 10.3390/cancers16234063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The historically most commonly used preoperative radiotherapy regimen for soft tissue sarcomas (STSs) consists of 50 Gray (Gy) delivered in 25 fractions over 5 weeks, achieving excellent local control, but with significant challenges due to prolonged treatment duration and early side effects. Reducing therapy duration while maintaining optimal local and distant control would be highly beneficial for patients. We aimed to investigate the outcome of an ultrahypofractionated radiotherapy (uhRT) regimen which may represent a shorter and more patient-friendly alternative. Methods: This multi-center, open-label, phase 2 clinical trial with a clustered cohort design was conducted within the Swiss Sarcoma Network (SSN). Adult patients (aged ≥ 18 years) with STS of the extremities or superficial trunk and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-3 were included. Participants were assigned to either normofractionated radiotherapy (nRT) at 50 Gy in 25 fractions or uhRT at 25 Gy in 5 fractions. Data were collected prospectively in real-world-time clinical settings. The primary outcome was local recurrence-free survival (LRFS), with overall survival (OS) and wound complications as secondary outcomes. Results: Between March 2020 and October 2023, 138 patients were included in the study; 74 received nRT and 64 received uhRT. The median follow-up times were 2.2 years for uhRT and 3.6 years for nRT. The LRFS rates at 1 year were 97.0% for nRT and 94.8% for uhRT (p = 0.57). The two-year LRFS rates were 91.9% and 94.8%, respectively (p = 0.57). The one- and two-year OS rates were 97.1%/86.3% and 98.2%/88.8%, respectively (p = 0.72). The wound complication rate was comparable between the nRT (12.0%) and uhRT (12.5%) groups (p = 0.99). Conclusions: UhRT for STSs offers an effective and safe alternative to traditional nRT, with comparable early LRFS, OS and wound complication rates. Given the two-year median follow-up, which is critical for evaluating local recurrence, uhRT shows promise as a shorter and more convenient treatment regimen. UhRT may be a safe and effective alternative treatment option to traditional nRT.
Collapse
Affiliation(s)
- Philip Heesen
- Medical Faculty, University of Zurich, 8032 Zurich, Switzerland
| | - Michele Di Lonardo
- Sarcoma Service, Department of Orthopedics and Trauma, Sarcoma Center, Radiation Oncology, LUKS University Hospital, 6000 Luzern, Switzerland
| | - Olga Ciobanu-Caraus
- Faculty of Medicine, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Georg Schelling
- Sarcoma Service, Department of Orthopedics and Trauma, Sarcoma Center, Radiation Oncology, LUKS University Hospital, 6000 Luzern, Switzerland
| | - Daniel Zwahlen
- Faculty of Health Sciences & Medicine, University Lucerne, Frohburgstrasse 3, 6002 Luzern, Switzerland
| | - Beata Bode-Lesniewska
- Sarcoma Service, Department of Orthopedics and Trauma, Sarcoma Center, Radiation Oncology, LUKS University Hospital, 6000 Luzern, Switzerland
- Sarcoma Service, Klinik für Orthopädie und Traumatologie, Radiation Oncology, Sarcoma Center, Kantonsspital Winterthur, 8400 Winterthur, Switzerland
| | - Christoph Glanzmann
- Sarcoma Service, Department of Orthopedics and Trauma, Sarcoma Center, Radiation Oncology, LUKS University Hospital, 6000 Luzern, Switzerland
| | - Gabriela Studer
- Sarcoma Service, Department of Orthopedics and Trauma, Sarcoma Center, Radiation Oncology, LUKS University Hospital, 6000 Luzern, Switzerland
| | - Bruno Fuchs
- Sarcoma Service, Department of Orthopedics and Trauma, Sarcoma Center, Radiation Oncology, LUKS University Hospital, 6000 Luzern, Switzerland
- Faculty of Health Sciences & Medicine, University Lucerne, Frohburgstrasse 3, 6002 Luzern, Switzerland
- Sarcoma Service, Klinik für Orthopädie und Traumatologie, Radiation Oncology, Sarcoma Center, Kantonsspital Winterthur, 8400 Winterthur, Switzerland
| |
Collapse
|
5
|
Liao P, Han L, Tao R, Li D, Zhang P, Xiao H. Specific peptides targeting the myocardiocyte are prognostic markers for heart attack: Function of α-SMA protein. Int J Biol Macromol 2024; 280:135793. [PMID: 39304042 DOI: 10.1016/j.ijbiomac.2024.135793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease that often results in a significant decline in heart function and associated complications. α-SMA (α-smooth muscle cell actin) is an important biomarker in the process of cardiac remodeling and repair, and its expression level is closely related to myocardial remodeling and prognosis. Therefore, the purpose of this study was to investigate the potential of nanoparticles containing cardiomyocyte targeting peptides in predicting prognosis and α-SMA protein expression after myocardial infarction, with a view to providing new therapeutic strategies and clinical guidelines. In this study, a novel targeting nanoparticle was constructed, using cardiomyocyte specific peptides as targeting ligands, and characterized by loading different drugs. Subsequently, a mouse model of myocardial infarction was used to systematically evaluate the effect of nanoparticles on α-SMA protein expression and prognosis prediction ability after MI. The expression level of α-SMA was analyzed by Western blot and immunohistochemistry, and the prognosis was evaluated by cardiac function assessment. The study found that nanoparticles containing cardiomyocyte targeting peptides significantly increased α-SMA expression levels and improved heart function in animal models of myocardial infarction. Compared with the control group, the application of targeted nanoparticles was closely related to the level of myocardial cell repair and fibrosis, and could effectively predict the prognosis after myocardial infarction. Therefore, nanoparticles containing cardiomyocyte targeting peptides can not only effectively improve the expression of α-SMA, but also serve as an important prognostic tool after myocardial infarction.
Collapse
Affiliation(s)
- Pengfei Liao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Lu Han
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Ran Tao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Dandan Li
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China.
| | - Hongbing Xiao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China.
| |
Collapse
|
6
|
Van Dieren L, Quisenaerts T, Licata M, Beddok A, Lellouch AG, Ysebaert D, Saldien V, Peeters M, Gorbaslieva I. Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects. Cancers (Basel) 2024; 16:3656. [PMID: 39518094 PMCID: PMC11545184 DOI: 10.3390/cancers16213656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase the chances of radiotherapy (RT) triggering systemic anti-tumor immune responses. METHODS This review is created in accordance with the PRISMA guidelines. RESULTS AND CONCLUSION HT and RT have both complementary and synergistic immunological effects. Both methods trigger danger signal release, promoting cytokine and chemokine secretion, which increases T-cell infiltration and facilitates cell death. Both treatments upregulate extracellular tumor HSP70, which could amplify DAMP recognition by macrophages and DCs, leading to stronger tumor antigen presentation and CTL-mediated immune responses. Additionally, the combined increase in cell adhesion molecules (VCAM-1, ICAM-1, E-selectin, L-selectin) could enhance leukocyte adhesion to tumors, improving lymphocyte trafficking and boosting systemic anti-tumor effects. Lastly, HT causes vasodilation and improves blood flow, which might exacerbate those distant effects. We suggest the combination of local radiotherapy with fever-range whole-body hyperthermia to optimally enhance the chances of triggering the abscopal effect mediated by the immune system.
Collapse
Affiliation(s)
- Loïc Van Dieren
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Quisenaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Arnaud Beddok
- Institut Godinot, Radiation Oncology Department, 85054 Reims, France
- GCMI, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dirk Ysebaert
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Vera Saldien
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Marc Peeters
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Ivana Gorbaslieva
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| |
Collapse
|
7
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Gatfield ER, Tadross J, Ince W. Immune checkpoint inhibitor use in head and neck squamous cell carcinoma: the current landscape and future perspectives. Future Oncol 2024; 20:1695-1711. [PMID: 38889284 PMCID: PMC11485897 DOI: 10.1080/14796694.2024.2362612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Immune checkpoint inhibitors are licensed for use in patients with unresectable, recurrent or metastatic head and neck squamous cell carcinoma. Multiple published and ongoing trials are assessing efficacy in the curative management of patients in the concomitant, neoadjuvant and/or adjuvant settings, as well as part of multimodality treatment in patients with metastatic disease. This review evaluates the evidence for use of immune checkpoint inhibitors in all stages of head and neck squamous cell carcinoma and considers future approaches.
Collapse
Affiliation(s)
- Elinor R Gatfield
- Oncology Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John Tadross
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ,UK
| | - William Ince
- Oncology Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
9
|
Lüdeking M, Stemwedel K, Ramachandran D, Grosche S, Christiansen H, Merten R, Henkenberens C, Bogdanova NV. Efficiency of moderately hypofractionated radiotherapy in NSCLC cell model. Front Oncol 2024; 14:1293745. [PMID: 38720797 PMCID: PMC11076864 DOI: 10.3389/fonc.2024.1293745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Background The current standard of radiotherapy for inoperable locally advanced NSCLCs with single fraction doses of 2.0 Gy, results in poor outcomes. Several fractionation schedules have been explored that developed over the past decades to increasingly more hypofractionated treatments. Moderate hypofractionated radiotherapy, as an alternative treatment, has gained clinical importance due to shorter duration and higher patient convenience. However, clinical trials show controversial results, adding to the need for pre-clinical radiobiological studies of this schedule. Methods We examined in comparative analysis the efficiency of moderate hypofractionation and normofractionation in four different NSCLC cell lines and fibroblasts using several molecular-biological approaches. Cells were daily irradiated with 24x2.75 Gy (moderate hypofractionation) or with 30x2 Gy (normofractionation), imitating the clinical situation. Proliferation and growth rate via direct counting of cell numbers, MTT assay and measurements of DNA-synthesizing cells (EdU assay), DNA repair efficiency via immunocytochemical staining of residual γH2AX/53BP1 foci and cell surviving via clonogenic assay (CSA) were experimentally evaluated. Results Overall, the four tumor cell lines and fibroblasts showed different sensitivity to both radiation regimes, indicating cell specificity of the effect. The absolute cell numbers and the CSA revealed significant differences between schedules (P < 0.0001 for all employed cell lines and both assays) with a stronger effect of moderate hypofractionation. Conclusion Our results provide evidence for the similar effectiveness and toxicity of both regimes, with some favorable evidence towards a moderate hypofractionation. This indicates that increasing the dose per fraction may improve patient survival and therapy outcomes.
Collapse
Affiliation(s)
- Marcus Lüdeking
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Katharina Stemwedel
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Dhanya Ramachandran
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Sinja Grosche
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Hans Christiansen
- Radiation Oncology, Hannover Medical School, Hannover, Hannover, Germany
| | - Roland Merten
- Radiation Oncology, Hannover Medical School, Hannover, Hannover, Germany
| | - Christoph Henkenberens
- Radiation Oncology, Hannover Medical School, Hannover, Hannover, Germany
- Radiation Oncology, Dorothea Christiane Erxleben Clinic, Wernigerode, Germany
| | | |
Collapse
|
10
|
Tojjari A, Yu J, Saeed A. Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1058. [PMID: 38473415 DOI: 10.3390/cancers16051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent and often fatal liver cancer, presents significant treatment challenges, especially in its advanced stages. This article delves into the promising approach of combining immunotherapy, particularly immune checkpoint inhibitors, with radiation therapy, a cornerstone of HCC management. Our review synthesizes current preclinical and clinical research, highlighting the potential synergistic effects of this combinational treatment. Emerging evidence suggests that this synergy enhances tumor control and improves patient survival rates. The combination leverages the localized, tumor-targeting ability of radiation therapy and the systemic, immune-boosting effects of immunotherapy, potentially overcoming the limitations inherent in each treatment modality when used separately. This integrative approach is especially promising in addressing the complex tumor microenvironment of HCC. However, the treatment landscape is nuanced, with challenges such as patient-specific response variability and potential resistance to therapies. Future research directions should focus on refining these combination strategies, tailoring them to individual patient profiles, and understanding the underlying mechanisms that govern the interaction between immunotherapy and radiation therapy. Such advancements could significantly improve HCC management, setting new standards for patient care and treatment efficacy.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| | - James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| |
Collapse
|
11
|
Gallitto M, Pan PC, Chan MD, Milano MT, Wang TJC. The role of radiotherapy in immunotherapy strategies in the central nervous system. Neuro Oncol 2024; 26:S66-S75. [PMID: 38437664 PMCID: PMC10911795 DOI: 10.1093/neuonc/noad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
The clinical efficacy and relative tolerability of adverse effects of immune checkpoint immunotherapy have led to its increasingly routine use in the management of multiple advanced solid malignancies. Radiation therapy (RT) is well-known to have both local and distant immunomodulatory effects, which has led to extensive investigation into the synergism of these 2 therapies. While the central nervous system (CNS) has historically been thought to be a sanctuary site, well-protected by the blood-brain barrier from the effects of immunotherapy, over the last several years studies have shown the benefits of these drugs, particularly in metastatic disease involving the CNS. This review explores current progress and the future of combination therapy with immune checkpoint inhibitors and RT.
Collapse
Affiliation(s)
- Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Peter C Pan
- Division of Neuro-Oncology, Columbia University Irving Medical Center, New York, New York , USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Koukourakis IM, Giakzidis AG, Koukourakis MI. Anti-PD-1 immunotherapy with dose-adjusted ultra-hypofractionated re-irradiation in patients with locoregionally recurrent head and neck cancer. Clin Transl Oncol 2023; 25:3032-3041. [PMID: 37059932 PMCID: PMC10462536 DOI: 10.1007/s12094-023-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Patients with recurrent inoperable squamous-cell head-neck cancer (HNSCC) after chemo-radiotherapy have an ominous prognosis. Re-irradiation can be applied with some efficacy and high toxicity rates. Anti-PD-1 immunotherapy is effective in 25% of patients. Immunogenic death produced by large radiotherapy (RT) fractions may enhance immune response. MATERIALS AND METHODS We evaluated the efficacy and tolerance of ultra-hypofractionated immuno-radiotherapy (uhypo-IRT) in 17 patients with recurrent HNSCC and 1 with melanoma. Four of HNSCC patients also had oligometastatic disease. Using a dose/time/toxicity-based algorithm, 7, 7 and 4 patients received 1, 2 and 3 fractions of 8 Gy to the tumor, respectively. Nivolumab anti-PD-1 immunotherapy was administered concurrently with RT and continued for 24 cycles, or until disease progression or manifestation of immune-related adverse events (irAEs). RESULTS Early and late RT toxicities were minimal. Three patients developed irAEs (16%). After the 12th cycle, 7/17 (41.2%) and 5/17 (29.4%) patients with HNSCC showed complete (CR) and partial response (PR), respectively. CR was also achieved in the melanoma patient. The objective response rates in HNSCC patients were 57%, 86% and 66%, after 1, 2 and 3 fractions, respectively (overall response rate 70.6%). Most responders experienced an increase in peripheral lymphocyte counts. The median time to progression was 10 months. The 3-year projected locoregional progression-free survival was 35%, while the 3-year disease-specific overall survival was 50%. CONCLUSIONS Anti-PD1 uhypo-IRT is safe and effective in patients with recurrent HNSCC. The high objective response rates and the long survival without evidence of disease support further trials on uhypo-IRT.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st, Department of Radiology, Medical School, "Aretaieion" University Hospital, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
- Department of Radiotherapy - Oncology, Medical School, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Axiotis G Giakzidis
- Department of Radiotherapy - Oncology, Medical School, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy - Oncology, Medical School, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| |
Collapse
|
13
|
Ji X, Jiang W, Wang J, Zhou B, Ding W, Liu S, Huang H, Chen G, Sun X. Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Front Immunol 2023; 13:1106644. [PMID: 36713375 PMCID: PMC9877461 DOI: 10.3389/fimmu.2022.1106644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy is one of the mainstays of cancer treatment. More than half of cancer patients receive radiation therapy. In addition to the well-known direct tumoricidal effect, radiotherapy has immunomodulatory properties. When combined with immunotherapy, radiotherapy, especially high-dose radiotherapy (HDRT), exert superior systemic effects on distal and unirradiated tumors, which is called abscopal effect. However, these effects are not always effective for cancer patients. Therefore, many studies have focused on exploring the optimized radiotherapy regimens to further enhance the antitumor immunity of HDRT and reduce its immunosuppressive effect. Several studies have shown that low-dose radiotherapy (LDRT) can effectively reprogram the tumor microenvironment, thereby potentially overcoming the immunosuppressive stroma induced by HDRT. However, bridging the gap between preclinical commitment and effective clinical delivery is challenging. In this review, we summarized the existing studies supporting the combined use of HDRT and LDRT to synergistically enhance antitumor immunity, and provided ideas for the individualized clinical application of multimodal radiotherapy (HDRT+LDRT) combined with immunotherapy.
Collapse
|
14
|
Pal K, Sheth RA. Engineering the Tumor Immune Microenvironment through Minimally Invasive Interventions. Cancers (Basel) 2022; 15:196. [PMID: 36612192 PMCID: PMC9818918 DOI: 10.3390/cancers15010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment (TME) is a unique landscape that poses several physical, biochemical, and immune barriers to anti-cancer therapies. The rapidly evolving field of immuno-engineering provides new opportunities to dismantle the tumor immune microenvironment by efficient tumor destruction. Systemic delivery of such treatments can often have limited local effects, leading to unwanted offsite effects such as systemic toxicity and tumor resistance. Interventional radiologists use contemporary image-guided techniques to locally deliver these therapies to modulate the immunosuppressive TME, further accelerating tumor death and invoking a better anti-tumor response. These involve local therapies such as intratumoral drug delivery, nanorobots, nanoparticles, and implantable microdevices. Physical therapies such as photodynamic therapy, electroporation, hyperthermia, hypothermia, ultrasound therapy, histotripsy, and radiotherapy are also available for local tumor destruction. While the interventional radiologist can only locally manipulate the TME, there are systemic offsite recruitments of the immune response. This is known as the abscopal effect, which leads to more significant anti-tumoral downstream effects. Local delivery of modern immunoengineering methods such as locoregional CAR-T therapy combined with immune checkpoint inhibitors efficaciously modulates the immunosuppressive TME. This review highlights the various advances and technologies available now to change the TME and revolutionize oncology from a minimally invasive viewpoint.
Collapse
Affiliation(s)
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Mireștean CC, Iancu RI, Iancu DPT. New horizons in modulating the radio-sensitivity of head and neck cancer - 100 years after Warburg' effect discovery. Front Oncol 2022; 12:908695. [PMID: 36568220 PMCID: PMC9780029 DOI: 10.3389/fonc.2022.908695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor radiation resistance along with chemotherapy resistance is one of the main causes of therapeutic failure of radiotherapy-treated head and neck cancers. 100 years after the discovery of the Warburg effect, a process specific to malignant cells to metabolize glucose especially anaerobically even under normoxia condition, its modulation has become a viable therapeutic target for improving the results of cancer therapies. Improving the radio-sensitivity of head and neck tumors by reversing the Warburg effect can increase the rate of local control and reduce the toxicity associated with irradiation. P53 status can be used as a biomarker in the choice of a single agent strategy (cell respiration inhibition with Metformin) or double inhibition, both of respiration and glycolysis. Targeting of enzymes involved in the Warburg effect, such as Hexokinase-II, are strategies with potential to be applied in clinical practice with radio-sensitizing effect for head and neck squamous cell carcinoma. Even if anti-Warburg therapies tested in clinical trials have been associated with either toxic deaths or a minor clinical benefit, the identification of both potential radio-sensitivity biomarkers and methods of reversing the Warburg effect will play an important role in the radiobiology of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Medical Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, Craiova, Romania,Department of Surgery, Railways Clinical Hospital, Iasi, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania,Department of Clinical Laboratory, St. Spiridon Emergency Hospital, Iasi, Romania,*Correspondence: Roxana Irina Iancu,
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology and Radiotherapy, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania,Department of Radiation Oncology, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
16
|
Huan T, Li H, Tang B. Radiotherapy plus CAR-T cell therapy to date: A note for cautions optimism? Front Immunol 2022; 13:1033512. [PMID: 36466874 PMCID: PMC9714575 DOI: 10.3389/fimmu.2022.1033512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Radiotherapy (RT) is a traditional therapeutic regime that focuses on ionizing radiation, however, RT maintains largely palliative due to radioresistance. Factors such as hypoxia, the radiosensitivity of immune cells, and cancer stem cells (CSCs) all come into play in influencing the significant impact of radioresistance in the irradiated tumor microenvironment (TME). Due to the substantial advances in the treatment of malignant tumors, a promising approach is the genetically modified T cells with chimeric antigen receptors (CARs) to eliminate solid tumors. Moreover, CAR-T cells targeting CSC-related markers would eliminate radioresistant solid tumors. But solid tumors that support an immune deserted TME, are described as immunosuppressive and typically fail to respond to CAR-T cell therapy. And RT could overcome these immunosuppressive features; thus, growing evidence supports the combination of RT with CAR-T cell therapy. In this review, we provide a deep insight into the radioresistance mechanisms, advances, and barriers of CAR-T cells in response to solid tumors within TME. Therefore, we focus on how the combination strategy can be used to eliminate these barriers. Finally, we show the challenges of this therapeutic partnership.
Collapse
Affiliation(s)
- Tian Huan
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hongbo Li
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
17
|
Grosche S, Bogdanova NV, Ramachandran D, Lüdeking M, Stemwedel K, Christiansen H, Henkenberens C, Merten R. Effectiveness of hypofractionated and normofractionated radiotherapy in a triple‐negative breast cancer model. Front Oncol 2022; 12:852694. [DOI: 10.3389/fonc.2022.852694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is one of the most diagnosed malignant carcinomas in women with a triple-negative breast cancer (TNBC) phenotype being correlated with poorer prognosis. Fractionated radiotherapy (RT) is a central component of breast cancer management, especially after breast conserving surgery and is increasingly important for TNBC subtype prognosis. In recent years, moderately hypofractionated radiation schedules are established as a standard of care, but many professionals remain skeptical and are concerned about their efficiency and side effects. In the present study, two different triple-negative breast cancer cell lines, a non-malignant breast epithelial cell line and fibroblasts, were irradiated daily under normofractionated and hypofractionated schedules to evaluate the impact of different irradiation regimens on radiation-induced cell-biological effects. During the series of radiotherapy, proliferation, growth rate, double-strand DNA break-repair (DDR), cellular senescence, and cell survival were measured. Investigated normal and cancer cells differed in their responses and receptivity to different irradiation regimens, indicating cell line/cell type specificity of the effect. At the end of both therapy concepts, normal and malignant cells reach almost the same endpoint of cell count and proliferation inhibition, confirming the clinical observations in the follow-up at the cellular level. These result in cell lines closely replicating the irradiation schedules in clinical practice and, to some extent, contributing to the understanding of growth rate or remission of tumors and the development of fibrosis.
Collapse
|
18
|
Han X, Chen Y, Zhang N, Huang C, He G, Li T, Wei M, Song Q, Mo S, Lv Y. Single-cell mechanistic studies of radiation-mediated bystander effects. Front Immunol 2022; 13:849341. [PMID: 36389749 PMCID: PMC9640915 DOI: 10.3389/fimmu.2022.849341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Ionizing radiation (IR) has been widely used in the diagnosis and treatment of clinical diseases, with radiation therapy (RT) being particularly rapid, but it can induce “bystander effects” that lead to biological responses in non-target cells after their neighboring cells have been irradiated. To help clarify how radiotherapy induces these effects, To help clarify how radiotherapy induces these effects, we analyzed single-cell RNA sequencing data from irradiated intestinal tissues on day 1 (T1 state), day 3 (T3 state), day 7 (T7 state), and day 14 (T14 state) after irradiation, as well as from healthy intestinal tissues (T0 state), to reveal the cellular level, molecular level, and involvement of different time irradiated mouse intestinal tissues in biological signaling pathways. In addition, changes in immune cell subpopulations and myeloid cell subpopulations after different radiation times were further explored, and gene regulatory networks (GRNs) of these cell subpopulations were constructed. Cellular communication between radiation-specific immune cells was explored by cell-to-cell communication events. The results suggest that radiotherapy trigger changes in immune cell subsets, which then reprogram the immune ecosystem and mediate systemic bystander effects. These radiation-specific immune cells participate in a wide range of cell-to-cell communication events. In particular, radiation-specific CD8+T cells appear to be at the core of communication and appear to persist in the body after recovery from radiotherapy, with enrichment analysis showing that radiation-specific CD8+ T cells are associated with ferroptosis. Thus, radiation-specific CD8+ T cells may be involved in cellular ferroptosis-mediated adverse effects caused by RT.
Collapse
Affiliation(s)
- Xueqiong Han
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yixuan Chen
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Nan Zhang
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Chengyu Huang
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Guangyao He
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Guangxi Medical University, Nanning, China
| | - Ting Li
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Mengxin Wei
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Qiong Song
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
| | - Shaowen Mo
- Department of Basic Science, YuanDong International Academy Of Life Sciences, Hong Kong, China
- *Correspondence: Shaowen Mo, ; Yufeng Lv,
| | - Yufeng Lv
- Department of Oncology, Foresea Life Insurance Guangxi Hospital, Nanning, China
- *Correspondence: Shaowen Mo, ; Yufeng Lv,
| |
Collapse
|
19
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
20
|
Lucia F, Geier M, Schick U, Bourbonne V. Narrative Review of Synergistics Effects of Combining Immunotherapy and Stereotactic Radiation Therapy. Biomedicines 2022; 10:biomedicines10061414. [PMID: 35740435 PMCID: PMC9219862 DOI: 10.3390/biomedicines10061414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Stereotactic radiotherapy (SRT) has become an attractive treatment modality in full bloom in recent years by presenting itself as a safe, noninvasive alternative to surgery to control primary or secondary malignancies. Although the focus has been on local tumor control as the therapeutic goal of stereotactic radiotherapy, rare but intriguing observations of abscopal (or out-of-field) effects have highlighted the exciting possibility of activating antitumor immunity using high-dose radiation. Furthermore, immunotherapy has revolutionized the treatment of several types of cancers in recent years. However, resistance to immunotherapy often develops. These observations have led researchers to combine immunotherapy with SRT in an attempt to improve outcomes. The benefits of this combination would come from the stimulation and suppression of various immune pathways. Thus, in this review, we will first discuss the immunomodulation induced by SRT with the promising results of preclinical studies on the changes in the immune balance observed after SRT. Then, we will discuss the opportunities and risks of the combination of SRT and immunotherapy with the preclinical and clinical data available in the literature. Furthermore, we will see that many perspectives are conceivable to potentiate the synergistic effects of this combination with the need for prospective studies to confirm the encouraging data.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
- Correspondence:
| | - Margaux Geier
- Medical Oncology Department, University Hospital, 29200 Brest, France;
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, 29200 Brest, France; (U.S.); (V.B.)
- LaTIM, INSERM, UMR 1101, University of Brest, 29200 Brest, France
| |
Collapse
|
21
|
Tumor draining lymph nodes, immune response, and radiotherapy: Towards a revisal of therapeutic principles. Biochim Biophys Acta Rev Cancer 2022; 1877:188704. [DOI: 10.1016/j.bbcan.2022.188704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
|
22
|
van Luijk IF, Smith SM, Marte Ojeda MC, Oei AL, Kenter GG, Jordanova ES. A Review of the Effects of Cervical Cancer Standard Treatment on Immune Parameters in Peripheral Blood, Tumor Draining Lymph Nodes, and Local Tumor Microenvironment. J Clin Med 2022; 11:2277. [PMID: 35566403 PMCID: PMC9102821 DOI: 10.3390/jcm11092277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer remains a public health concern despite all the efforts to implement vaccination and screening programs. Conventional treatment for locally advanced cervical cancer consists of surgery, radiotherapy (with concurrent brachytherapy), combined with chemotherapy, or hyperthermia. The response rate to combination approaches involving immunomodulatory agents and conventional treatment modalities have been explored but remain dismal in patients with locally advanced disease. Studies exploring the immunological effects exerted by combination treatment modalities at the different levels of the immune system (peripheral blood (PB), tumor-draining lymph nodes (TDLN), and the local tumor microenvironment (TME)) are scarce. In this systemic review, we aim to define immunomodulatory and immunosuppressive effects induced by conventional treatment in cervical cancer patients to identify the optimal time point for immunotherapy administration. Radiotherapy (RT) and chemoradiation (CRT) induce an immunosuppressive state characterized by a long-lasting reduction in peripheral CD3, CD4, CD8 T cells and NK cells. At the TDLN level, CRT induced a reduction in Nrp1+Treg stability and number, naïve CD4 and CD8 T cell numbers, and an accompanying increase in IFNγ-producing CD4 helper T cells, CD8 T cells, and NK cells. Potentiation of the T-cell anti-tumor response was particularly observed in patients receiving low irradiation dosage. At the level of the TME, CRT induced a rebound effect characterized by a reduction of the T-cell anti-tumor response followed by stable radioresistant OX40 and FoxP3 Treg cell numbers. However, the effects induced by CRT were very heterogeneous across studies. Neoadjuvant chemotherapy (NACT) containing both paclitaxel and cisplatin induced a reduction in stromal FoxP3 Treg numbers and an increase in stromal and intratumoral CD8 T cells. Both CRT and NACT induced an increase in PD-L1 expression. Although there was no association between pre-treatment PD-L1 expression and treatment outcome, the data hint at an association with pro-inflammatory immune signatures, overall and disease-specific survival (OS, DSS). When considering NACT, we propose that posterior immunotherapy might further reduce immunosuppression and chemoresistance. This review points at differential effects induced by conventional treatment modalities at different immune compartments, thus, the compartmentalization of the immune responses as well as individual patient's treatment plans should be carefully considered when designing immunotherapy treatment regimens.
Collapse
Affiliation(s)
- Iske F. van Luijk
- Haaglanden Medical Center, Lijnbaan 32, 2512 VA The Hague, The Netherlands
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Sharissa M. Smith
- Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Maria C. Marte Ojeda
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Arlene L. Oei
- Laboratory for Experimental Oncology and Radiobiology, Department of Radiation Oncology, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Gemma G. Kenter
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Ekaterina S. Jordanova
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
23
|
Zhang Y, Ren H, Zheng Y, Yang Q, Li M, Gu H, Hao L. Exploring the optimal dose of low ionizing radiation to enhance immune function: a rabbit model. J Int Med Res 2021; 49:3000605211015079. [PMID: 34369192 PMCID: PMC8358509 DOI: 10.1177/03000605211015079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary liver cancer is one of the most common malignant tumors in China. Currently, immunotherapy for liver cancer is a research hotspot. Experimental studies and epidemiological investigations have confirmed the antineoplastic activity of low ionizing radiation. The aim of this study was to explore the optimal dose of low ionizing radiation to enhance immune function. Twenty-five New Zealand rabbits were randomly divided into five groups (n = 5 each): experimental group 1 (25 mGy), experimental group 2 (50 mGy), experimental group 3 (75 mGy), experimental group 4 (100 mGy), and the control group (0 mGy). VX-2 tumor tissue was injected into rabbits using a high-frequency B-ultrasound probe (3.5 MHz). Rabbits were irradiated, and on day 4 after irradiation, blood was collected from each rabbit. Blood chemistry, interleukin (IL)-4, interferon (IFN)-γ, immunoglobulin (Ig)G, and IgM levels were assessed. On day 15 after irradiation, macrophage phagocytic function was assessed. The rabbits were sacrificed, and the spleen was removed and weighed to calculate its spleen index. Each parameter was highest in the experimental group 3 (75 mGy). Thus, we suspect the optimal low ionizing radiation dose to improve immune function may be 75 mGy.
Collapse
Affiliation(s)
- Yuhong Zhang
- Medical Imaging Class 17-03, School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar, China
| | - Hongyan Ren
- Medical Imaging Class 17-03, School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar, China
| | - Yifan Zheng
- Medical Imaging Class 17-03, School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar, China
| | - Qiang Yang
- Medical Imaging Class 17-03, School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar, China
| | - Miao Li
- Medical Imaging Class 17-03, School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar, China
| | - Hongqian Gu
- Molecular Imaging Laboratory, School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar, China
| | - Liguo Hao
- Molecular Imaging Laboratory, School of Medical Technology, Qiqihar Medical University, Heilongjiang, Qiqihar, China
| |
Collapse
|
24
|
De Martino M, Padilla O, Daviaud C, Wu CC, Gartrell RD, Vanpouille-Box C. Exploiting Radiation Therapy to Restore Immune Reactivity of Glioblastoma. Front Oncol 2021; 11:671044. [PMID: 34094969 PMCID: PMC8173136 DOI: 10.3389/fonc.2021.671044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is among the most aggressive of brain tumors and confers a dismal prognosis despite advances in surgical technique, radiation delivery methods, chemotherapy, and tumor-treating fields. While immunotherapy (IT) has improved the care of several adult cancers with previously dismal prognoses, monotherapy with IT in GBM has shown minimal response in first recurrence. Recent discoveries in lymphatics and evaluation of blood brain barrier offer insight to improve the use of ITs and determine the best combinations of therapies, including radiation. We highlight important features of the tumor immune microenvironment in GBM and potential for combining radiation and immunotherapy to improve prognosis in this devastating disease.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Oscar Padilla
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Robyn D Gartrell
- Department of Pediatrics, Pediatric Hematology/Oncology/SCT, Columbia University Irving Medical Center, New York, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.,Sandra and Edward Meyer Cancer Center, New York, NY, United States
| |
Collapse
|