1
|
BATOROV EGORV, INESHINA ALISAD, ARISTOVA TATIANAA, DENISOVA VERAV, SIZIKOVA SVETLANAA, BATOROVA DARIAS, USHAKOVA GALINAY, SHEVELA EKATERINAY, CHERNYKH ELENAR. PD-1 + and TIM-3 + T cells widely express common γ-chain cytokine receptors in multiple myeloma patients, and IL-2, IL-7, IL-15 stimulation up-regulates PD-1 and TIM-3 on T cells. Oncol Res 2024; 32:1575-1587. [PMID: 39308517 PMCID: PMC11413821 DOI: 10.32604/or.2024.047893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma (MM) progression. Simultaneously, previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upon stimulation with common γ-chain family cytokines in vitro and during homeostatic proliferation. The aim of the present work was to study the impact of homeostatic proliferation on the expansion of certain T cell subsets up-regulating PD-1 and TIM-3 checkpoint molecules. Methods The expression of CD25, CD122, CD127 common γ-chain cytokine receptors, phosphorylated signal transducer and activator of transcription-5 (pSTAT5) and eomesodermin (EOMES) was comparatively assessed with flow cytometry in PD-1- and TIM-3-negative and positive T cells before the conditioning and during the first post-transplant month in peripheral blood samples of MM patients. Results Substantial proportions of PD-1- and TIM-3-positive T lymphocytes expressed common γ-chain cytokine receptors and pSTAT5. Frequencies of cytokine receptor expressing cells were significantly higher within TIM-3+ T cells compared to PD-1+TIM-3- subsets. Considerable proportions of both PD-1-/TIM-3-negative and positive CD8+ T cells express EOMES, while only moderate frequencies of CD4+ PD-1+/TIM-3+ T cells up-regulate this transcription factor. Besides, the surface presence of CD25 and intranuclear expression of EOMES in CD4+ T cells were mutually exclusive regardless of PD-1 and TIM-3 expression. The stimulation with common γ-chain cytokines up-regulates PD-1 and TIM-3 during the proliferation of initially PD-1/TIM-3-negative T cells but fails to expand initially PD-1+ and TIM-3+ T cell subsets in vitro. Conclusions Both PD-1 and TIM-3 expressing T cells appear to be able to respond to homeostatic cytokine stimulation. Differences in common γ-chain cytokine receptor expression between PD-1+ and TIM-3+ T cells may reflect functional dissimilarity of these cell subsets. Checkpoint blockade appears to alleviate lymphopenia-induced proliferation of PD-1+ T cells but may raise the possibility of immune-mediated adverse events.
Collapse
Affiliation(s)
- EGOR V. BATOROV
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
- V. Zelman Institute of Medicine and Psychology, Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| | - ALISA D. INESHINA
- V. Zelman Institute of Medicine and Psychology, Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| | - TATIANA A. ARISTOVA
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - VERA V. DENISOVA
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - SVETLANA A. SIZIKOVA
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - DARIA S. BATOROVA
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - GALINA Y. USHAKOVA
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - EKATERINA Y. SHEVELA
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - ELENA R. CHERNYKH
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| |
Collapse
|
2
|
Cortes-Selva D, Perova T, Skerget S, Vishwamitra D, Stein S, Boominathan R, Lau O, Calara-Nielsen K, Davis C, Patel J, Banerjee A, Stephenson T, Uhlar C, Kobos R, Goldberg J, Pei L, Trancucci D, Girgis S, Wang Lin SX, Wu LS, Moreau P, Usmani SZ, Bahlis NJ, van de Donk NWCJ, Verona RI. Correlation of immune fitness with response to teclistamab in relapsed/refractory multiple myeloma in the MajesTEC-1 study. Blood 2024; 144:615-628. [PMID: 38657201 PMCID: PMC11347796 DOI: 10.1182/blood.2023022823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Teclistamab, an off-the-shelf B-cell maturation antigen (BCMA) × CD3 bispecific antibody that mediates T-cell activation and subsequent lysis of BCMA-expressing myeloma cells, is approved for the treatment of patients with relapsed/refractory multiple myeloma (R/RMM). As a T-cell redirection therapy, clinical outcomes with teclistamab may be influenced by patient immune fitness and tumor antigen expression. We correlated tumor characteristics and baseline immune profiles with clinical response and disease burden in patients with R/RMM from the pivotal phase 1/2 MajesTEC-1 study, focusing on patients treated with 1.5 mg/kg of teclistamab (N = 165). Peripheral blood samples were collected at screening, and bone marrow samples were collected at screening and cycle 3. Better clinical outcomes to teclistamab correlated with higher baseline total T-cell counts in the periphery. In addition, responders (partial response or better) had a lower proportion of immunosuppressive regulatory T cells (Tregs), T cells expressing coinhibitory receptors (CD38, PD-1, and PD-1/TIM-3), and soluble BCMA and a T-cell profile suggestive of a more cytolytic potential, compared with nonresponders. Neither frequency of baseline bone marrow BCMA expression nor BCMA-receptor density was associated with clinical response to teclistamab. Improved progression-free survival was observed in patients with a lower frequency of T cells expressing exhaustion markers and immunosuppressive Tregs. Overall, response to teclistamab was associated with baseline immune fitness; nonresponders had immune profiles suggestive of immune suppression and T-cell dysfunction. These findings illustrate the importance of the contribution of the immune landscape to T-cell redirection therapy response. This trial was registered at www.ClinicalTrials.gov as #NCT03145181/NCT04557098.
Collapse
Affiliation(s)
| | | | | | | | - Sarah Stein
- Janssen Research & Development, Spring House, PA
| | | | - Onsay Lau
- Janssen Research & Development, Spring House, PA
| | | | - Cuc Davis
- Janssen Research & Development, Spring House, PA
| | | | | | | | | | | | | | - Lixia Pei
- Janssen Research & Development, Raritan, NJ
| | | | | | | | | | | | | | - Nizar J. Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
3
|
Giannotta C, Castella B, Tripoli E, Grimaldi D, Avonto I, D’Agostino M, Larocca A, Kopecka J, Grasso M, Riganti C, Massaia M. Immune dysfunctions affecting bone marrow Vγ9Vδ2 T cells in multiple myeloma: Role of immune checkpoints and disease status. Front Immunol 2022; 13:1073227. [PMID: 36605214 PMCID: PMC9808386 DOI: 10.3389/fimmu.2022.1073227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Bone marrow (BM) Vγ9Vδ2 T cells are intrinsically predisposed to sense the immune fitness of the tumor microenvironment (TME) in multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS). Methods In this work, we have used BM Vγ9Vδ2 T cells to interrogate the role of the immune checkpoint/immune checkpoint-ligand (ICP/ICP-L) network in the immune suppressive TME of MM patients. Results PD-1+ BM MM Vγ9Vδ2 T cells combine phenotypic, functional, and TCR-associated alterations consistent with chronic exhaustion and immune senescence. When challenged by zoledronic acid (ZA) as a surrogate assay to interrogate the reactivity to their natural ligands, BM MM Vγ9Vδ2 T cells further up-regulate PD-1 and TIM-3 and worsen TCR-associated alterations. BM MM Vγ9Vδ2 T cells up-regulate TIM-3 after stimulation with ZA in combination with αPD-1, whereas PD-1 is not up-regulated after ZA stimulation with αTIM-3, indicating a hierarchical regulation of inducible ICP expression. Dual αPD-1/αTIM-3 blockade improves the immune functions of BM Vγ9Vδ2 T cells in MM at diagnosis (MM-dia), whereas single PD-1 blockade is sufficient to rescue BM Vγ9Vδ2 T cells in MM in remission (MM-rem). By contrast, ZA stimulation induces LAG-3 up-regulation in BM Vγ9Vδ2 T cells from MM in relapse (MM-rel) and dual PD-1/LAG-3 blockade is the most effective combination in this setting. Discussion These data indicate that: 1) inappropriate immune interventions can exacerbate Vγ9Vδ2 T-cell dysfunction 2) ICP blockade should be tailored to the disease status to get the most of its beneficial effect.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Ezio Tripoli
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Daniele Grimaldi
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Ilaria Avonto
- Servizio Interdipartimentale di Immunoematologia e Medicina Trasfusionale, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Mattia D’Agostino
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Alessandra Larocca
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Joanna Kopecka
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Mariella Grasso
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy,*Correspondence: Massimo Massaia,
| |
Collapse
|
4
|
Sha Y, Wu J, Paul B, Zhao Y, Mathews P, Li Z, Norris J, Wang E, McDonnell DP, Kang Y. PPAR agonists attenuate lenalidomide's anti-myeloma activity in vitro and in vivo. Cancer Lett 2022; 545:215832. [PMID: 35872263 PMCID: PMC10355274 DOI: 10.1016/j.canlet.2022.215832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023]
Abstract
Many patients with multiple myeloma (MM) have comorbidities and are treated with PPAR agonists. Immunomodulatory agents (IMiDs) are the cornerstones for MM therapy. Currently, little is known about how co-administration of PPAR agonists impacts lenalidomide treatment in patients with MM. Here, we determined the effects of PPAR agonists on anti-myeloma activities of lenalidomide in vitro and in a myeloma xenograft mouse model. Genetic overexpression and CRISPR/cas9 knockout experiments were performed to determine the role of CRBN in the PPAR-mediated pathway. A retrospective cohort study was performed to determine the correlation of PPAR expression with the outcomes of patients with MM. PPAR agonists down-regulated CRBN expression and reduced the anti-myeloma efficacy of lenalidomide in vitro and in vivo. Co-treatment with PPAR antagonists increased CRBN expression and improved sensitivity to lenalidomide. PPAR expression was higher in bone marrow cells of patients with newly diagnosed MM than in normal control bone marrow samples. High PPAR expression was correlated with poor clinical outcomes. Our study provides the first evidence that PPARs transcriptionally regulate CRBN and that drug-drug interactions between PPAR agonists and IMiDs may impact myeloma treatment outcomes.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Barry Paul
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhiguo Li
- Duke Cancer Institute Bioinformatics Shared Resources, Duke University Medical Center, Durham, NC, USA
| | - John Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
5
|
Uckun FM. Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13092018. [PMID: 33922005 PMCID: PMC8122391 DOI: 10.3390/cancers13092018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This article provides a comprehensive review of new and emerging treatment strategies against multiple myeloma that employ precision medicines and/or drugs capable of improving the ability of the immune system to prevent or slow down the progression of multiple myeloma. These rationally designed new treatment methods have the potential to change the therapeutic landscape in multiple myeloma and improve the long-term survival outcome. Abstract SeverFigurel cellular elements of the bone marrow (BM) microenvironment in multiple myeloma (MM) patients contribute to the immune evasion, proliferation, and drug resistance of MM cells, including myeloid-derived suppressor cells (MDSCs), tumor-associated M2-like, “alternatively activated” macrophages, CD38+ regulatory B-cells (Bregs), and regulatory T-cells (Tregs). These immunosuppressive elements in bidirectional and multi-directional crosstalk with each other inhibit both memory and cytotoxic effector T-cell populations as well as natural killer (NK) cells. Immunomodulatory imide drugs (IMiDs), protease inhibitors (PI), monoclonal antibodies (MoAb), adoptive T-cell/NK cell therapy, and inhibitors of anti-apoptotic signaling pathways have emerged as promising therapeutic platforms that can be employed in various combinations as part of a rationally designed immunomodulatory strategy against an immunosuppressive tumor microenvironment (TME) in MM. These platforms provide the foundation for a new therapeutic paradigm for achieving improved survival of high-risk newly diagnosed as well as relapsed/refractory MM patients. Here we review the scientific rationale and clinical proof of concept for each of these platforms.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Norris Comprehensive Cancer Center and Childrens Center for Cancer and Blood Diseases, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA;
- Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Drug Discovery Institute, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Reven Pharmaceuticals, Translational Oncology Program, Golden, CO 80401, USA
| |
Collapse
|