1
|
Wolach B, Gavrieli R, Wolach O, Salamon P, de Boer M, van Leeuwen K, Abuzaitoun O, Broides A, Gottesman G, Grisaru-Soen G, Hagin D, Marcus N, Rottem M, Schlesinger Y, Stauber T, Stepensky P, Dinur-Schejter Y, Zeeli T, Hanna S, Etzioni A, Frizinsky S, Somech R, Roos D, Lachover-Roth I. Genotype-phenotype correlations in chronic granulomatous disease: insights from a large national cohort. Blood 2024; 144:1300-1313. [PMID: 38905634 DOI: 10.1182/blood.2023022590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Neutrophils are the first line of defense against invading pathogens. Neutrophils execute and modulate immune responses by generating reactive oxygen species (ROS). Chronic granulomatous disease (CGD) is a primary immune deficiency disorder of phagocytes, caused by inherited mutations in the genes of the nicotinamide adenine dinucleotide phosphate reduced oxidase enzyme. These mutations lead to failure of ROS generation followed by recurrent bacterial and fungal infections, frequently associated with hyperinflammatory manifestations. We report a multicenter cumulative experience in diagnosing and treating patients with CGD. From 1986 to 2021, 2918 patients experiencing frequent infections were referred for neutrophil evaluation. Among them, 110 patients were diagnosed with CGD: 56 of Jewish ancestry, 48 of Arabic ancestry, and 6 of non-Jewish/non-Arabic ancestry. As opposed to other Western countries, the autosomal recessive (AR) CGD subtypes were predominant in Israel (71/110 patients). Thirty-nine patients had X-linked CGD, in most patients associated with severe infections (clinical severity score ≥3) and poor outcomes, presenting at a significantly earlier age than AR-CGD subtypes. The full spectrum of infections and hyperinflammatory manifestations is described. Six patients had hypomorphic mutations with significantly milder phenotype, clinical severity score ≤2, and better outcomes. Hematopoietic stem cell transplantation was implemented in 39 of 110 patients (35.5%). Successful engraftment was achieved in 92%, with 82% long-term survival and 71% full clinical recovery. CGD is a complex disorder requiring a multiprofessional team. Early identification of the genetic mutation is essential for prompt diagnosis, suitable management, and prevention.
Collapse
Affiliation(s)
- Baruch Wolach
- Division of Pediatrics, Pediatric Hematology Clinic, Kfar Saba, Israel
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Gavrieli
- Division of Pediatrics, Pediatric Hematology Clinic, Kfar Saba, Israel
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Wolach
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Pazit Salamon
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, Kfar Saba, Israel
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arnon Broides
- Immunology Clinic, Soroka Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Joyce and Irving Goldman Medical School, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Giora Gottesman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Division of Pediatrics, Meir Medical Center, Kfar Saba, Israel
| | - Galia Grisaru-Soen
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Pediatric Infectious Diseases Unit, Dana-Dwek Children's Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - David Hagin
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Department of Medicine, Sourasky Medical Center, Tel Aviv, Israel
| | - Nufar Marcus
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Immunology Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Menachem Rottem
- Allergy Asthma and Immunology Service, Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Tali Stauber
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Polina Stepensky
- Department of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Medical Center, Jerusalem, Israel
| | - Yael Dinur-Schejter
- Department of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Medical Center, Jerusalem, Israel
- Allergy and Clinical Immunology Unit and The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Zeeli
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Suheir Hanna
- Ruth Children's Hospital and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amos Etzioni
- Ruth Children's Hospital and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shirly Frizinsky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Idit Lachover-Roth
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
2
|
Whittaker TE, Moula SE, Bahal S, Bakri FG, Hayajneh WA, Daoud AK, Naseem A, Cavazza A, Thrasher AJ, Santilli G. Multidimensional Response Surface Methodology for the Development of a Gene Editing Protocol for p67 phox-Deficient Chronic Granulomatous Disease. Hum Gene Ther 2024; 35:298-312. [PMID: 38062734 PMCID: PMC7615834 DOI: 10.1089/hum.2023.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Replacing a faulty gene with a correct copy has become a viable therapeutic option as a result of recent progress in gene editing protocols. Targeted integration of therapeutic genes in hematopoietic stem cells has been achieved for multiple genes using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system and Adeno-Associated Virus (AAV) to carry a donor template. Although this is a promising strategy to correct genetic blood disorders, it is associated with toxicity and loss of function in CD34+ hematopoietic stem and progenitor cells, which has hampered clinical application. Balancing the maximum achievable correction against deleterious effects on the cells is critical. However, multiple factors are known to contribute, and the optimization process is laborious and not always clearly defined. We have developed a flexible multidimensional Response Surface Methodology approach for optimization of gene correction. Using this approach, we could rapidly investigate and select editing conditions for CD34+ cells with the best possible balance between correction and cell/colony-forming unit (CFU) loss in a parsimonious one-shot experiment. This method revealed that using relatively low doses of AAV2/6 and CRISPR/Cas9 ribonucleoprotein complex, we can preserve the fitness of CD34+ cells and, at the same time, achieve high levels of targeted gene insertion. We then used these optimized editing conditions for the correction of p67phox-deficient chronic granulomatous disease (CGD), an autosomal recessive disorder of blood phagocytic cells resulting in severe recurrent bacterial and fungal infections and achieved rescue of p67phox expression and functional correction of CD34+-derived neutrophils from a CGD patient.
Collapse
Affiliation(s)
- Thomas E. Whittaker
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Sameer Bahal
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Faris Ghalib Bakri
- Division of Infectious Diseases, Department of Medicine, Jordan University Hospital, Amman, Jordan
- Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Wail Ahmad Hayajneh
- Division of Infectious Diseases, Department of Pediatrics, Jordan University of Science & Technology, Irbid, Jordan
| | - Ammar Khaled Daoud
- Division of Immunology, Department of Internal Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Asma Naseem
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| |
Collapse
|
3
|
Mortimer PM, Nichols E, Thomas J, Shanbhag R, Singh N, Coomber EL, Malik TH, Pickering MC, Randzavola L, Rae W, Bhattad S, Thomas DC. A novel mutation in EROS (CYBC1) causes chronic granulomatous disease. Clin Immunol 2023; 255:109761. [PMID: 37673227 DOI: 10.1016/j.clim.2023.109761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Chronic Granulomatous Disease (CGD) is an inborn error of immunity characterised by opportunistic infection and sterile granulomatous inflammation. CGD is caused by a failure of reactive oxygen species (ROS) production by the phagocyte NADPH oxidase. Mutations in the genes encoding phagocyte NADPH oxidase subunits cause CGD. We and others have described a novel form of CGD (CGD5) secondary to lack of EROS (CYBC1), a highly selective chaperone for gp91phox. EROS-deficient cells express minimal levels of gp91phox and its binding partner p22phox, but EROS also controls the expression of other proteins such as P2X7. The full nature of CGD5 is currently unknown. We describe a homozygous frameshift mutation in CYBC1 leading to CGD. Individuals who are heterozygous for this mutation are found in South Asian populations (allele frequency = 0.00006545), thus it is not a private mutation. Therefore, it is likely to be the underlying cause of other cases of CGD.
Collapse
Affiliation(s)
- Paige M Mortimer
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Esme Nichols
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Joe Thomas
- Aster Medcity Hospital, Kochi, Kerala, India
| | | | | | | | - Talat H Malik
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Lyra Randzavola
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - William Rae
- Clinical Development, Late Respiratory and Immunology, BioPharmaceuticals R and D, AstraZeneca, Cambridge, United Kingdom
| | | | - David C Thomas
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom.
| |
Collapse
|
4
|
Al-Mousa H, Barbouche MR. Genetics of Inborn Errors of Immunity in highly consanguineous Middle Eastern and North African populations. Semin Immunol 2023; 67:101763. [PMID: 37075586 DOI: 10.1016/j.smim.2023.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Consanguineous marriages in Middle Eastern and North African (MENA) countries are deeply-rooted tradition and highly prevalent resulting into increased prevalence of autosomal recessive diseases including Inborn Errors of Immunity (IEIs). Molecular genetic testing is an important diagnostic tool for IEIs since it provides a definite diagnosis, genotype-phenotype correlation, and guide therapy. In this review, we will discuss the current state and challenges of genomic and variome studies in MENA region populations, as well as the importance of funding advanced genome projects. In addition, we will review the MENA underlying molecular genetic defects of over 2457 patients published with the common IEIs, where autosomal recessive mode of inheritance accounts for 76% of cases with increased prevalence of combined immunodeficiency diseases (50%). The efforts made in the last three decades in terms of international collaboration and of in situ capacity building in MENA region countries led to the discovery of more than 150 novel genes involved in IEIs. Expanding sequencing studies within the MENA will undoubtedly be a unique asset for the IEI genetics which can advance research, and support precise genomic diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hamoud Al-Mousa
- Section of Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mohamed-Ridha Barbouche
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
5
|
Nunoi H, Nakamura H, Nishimura T, Matsukura M. Recent topics and advanced therapies in chronic granulomatous disease. Hum Cell 2023; 36:515-527. [PMID: 36534309 DOI: 10.1007/s13577-022-00846-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by the inability of phagocytes to produce reactive oxygen species (ROS) owing to a defect in any of the five components (CYBB/gp91phox, CYBA/p22phox, NCF1/p47phox, NCF2/p67phox, and NCF4/p40phox) and a concomitant regulatory component of Rac1/2 and CYBC1/Eros of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Patients with CGD are at an increased risk of life-threatening infections caused by catalase-positive bacteria and fungi and of inflammatory complications such as CGD colitis. Antimicrobial and azole antifungal prophylaxes have considerably reduced the incidence and severity of bacterial and improved fungal infections and overall survival. CGD studies have revealed the precise epidemiology and role of NADPH oxidase in innate immunity which has led to a new understanding of the importance of phagocyte oxygen metabolism in various host-defense systems and the fields leading to cell death processes. Moreover, ROS plays central roles in the determination of cell fate as secondary messengers and by modifying of various signaling molecules. According to this increasing knowledge about the effects of ROS on the inflammasomal system, immunomodulatory treatments, such as IFN-γ and anti-IL-1 antibodies, have been established. This review covers the current topics in CGD and the relationship between ROS and ROS-mediated pathophysiological phenomena. In addition to the shirt summary of hematopoietic stem cell transplantation and gene therapy, we introduce a novel ROS-producing enzyme replacement therapy using PEG-fDAO to compensate for NADPH oxidase deficiency.
Collapse
Affiliation(s)
- Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki-City, Miyazaki, 889-1692, Japan. .,Aisenkai Nichinan Hospital, 3649-2 Kazeta, Nichinan-City, Miyazaki, 887-0034, Japan.
| | - Hideki Nakamura
- Laboratory of Environmental Science and Technology, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto City, 860-0082, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki-City, Miyazaki, 889-1692, Japan
| | - Makoto Matsukura
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto City, 860-0082, Japan
| |
Collapse
|
6
|
Mondal S, Vignesh P, Loganathan SK, Arora K, Das J, Rawat A, Singh S. Case report: Chronic granulomatous disease presenting with early-onset inflammatory bowel disease and normal oxidative burst testing. Front Pediatr 2023; 10:964025. [PMID: 36714660 PMCID: PMC9874938 DOI: 10.3389/fped.2022.964025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Due to the lack of widespread availability of flow cytometry services for immunodeficiency, nitroblue tetrazolium test (NBT) is the commonly used screening modality to identify patients with chronic granulomatous disease (CGD) in developing countries. PROCEDURE We report a child with X-linked CGD with residual NADPH oxidase activity who had an indeterminate NBT result even in the presence of classical manifestations of CGD. RESULTS A 7-year-old boy presented with recurrent episodes of inflammatory colitis and Burkholderia cepacia septicaemia at the age of 3 years. He also had cervical adenitis due to Mycobacterium tuberculosis. NBT performed on multiple occasions was not suggestive of CGD. Dihydrorhodamine (DHR) test using phorbol myristate acetate (PMA) as a stimulant revealed a small blunt peak suggestive of AR-CGD; however, significant reduction in NADPH oxidase activity was noted with milder stimulants such as Escherichia coli and Staphylococcus aureus. Genetic analysis revealed a hemizygous pathogenic variant in CYBB. Flow cytometry showed diminished gp91phox expression in the patient's neutrophils suggestive of X-linked CGD. CONCLUSION Our case highlights that early-onset inflammatory bowel disease can be a presenting manifestation of CGD and diagnosis of CGD can be missed if NBT alone is used for screening, especially in the presence of NADPH oxidase activity. Diagnosis of "CGD with residual NADPH oxidase activity" requires a high degree of clinical suspicion, and performing DHR with different stimulants can unravel the diagnosis.
Collapse
|
7
|
Roos D, van Leeuwen K, Hsu AP, Priel DL, Begtrup A, Brandon R, Rawat A, Vignesh P, Madkaikar M, Stasia MJ, Bakri FG, de Boer M, Roesler J, Köker N, Köker MY, Jakobsen M, Bustamante J, Garcia-Morato MB, Shephard JLV, Cagdas D, Tezcan I, Sherkat R, Mortaz E, Fayezi A, Shahrooei M, Wolach B, Blancas-Galicia L, Kanegane H, Kawai T, Condino-Neto A, Vihinen M, Zerbe CS, Holland SM, Malech HL, Gallin JI, Kuhns DB. Hematologically important mutations: The autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol Dis 2021; 92:102596. [PMID: 34547651 DOI: 10.1016/j.bcmd.2021.102596] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe, recurrent bacterial and fungal infections. The disease is caused by mutations in the genes encoding the components of the leukocyte NADPH oxidase. This enzyme produces superoxide, which is subsequently metabolized to hydrogen peroxide and other reactive oxygen species (ROS). These products are essential for intracellular killing of pathogens by phagocytic leukocytes (neutrophils, eosinophils, monocytes and macrophages). The leukocyte NADPH oxidase is composed of five subunits, four of which are encoded by autosomal genes. These are CYBA, encoding p22phox, NCF1, encoding p47phox, NCF2, encoding p67phox and NCF4, encoding p40phox. This article lists all mutations identified in these genes in CGD patients. In addition, cytochrome b558 chaperone-1 (CYBC1), recently recognized as an essential chaperone protein for the expression of the X-linked NADPH oxidase component gp91phox (also called Nox2), is encoded by the autosomal gene CYBC1. Mutations in this gene also lead to CGD. Finally, RAC2, a small GTPase of the Rho family, is needed for activation of the NADPH oxidase, and mutations in the RAC2 gene therefore also induce CGD-like symptoms. Mutations in these last two genes are also listed in this article.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin van Leeuwen
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Debra Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Manesha Madkaikar
- National Institute of Immunohaematology, ICMR, 13th Floor, KEM Hospital Campus, Mumbai, Parel 400012, India
| | - Marie José Stasia
- University Grenoble Alpes, CEA, CNRS, IBS, and Centre Hospitalier Universitaire Grenoble Alpes, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), 38000 Grenoble, France
| | - Faris Ghalib Bakri
- Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Martin de Boer
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Joachim Roesler
- Dept of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nezihe Köker
- Dept of Immunology, Erciyes University School of Medicine, Kayseri, Turkey; Dept of Pediatrics, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - M Yavuz Köker
- Dept of Immunology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Marianne Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM, U550, and René Descartes University, Necker Medical School, Paris, France
| | - Maria Bravo Garcia-Morato
- Department of Immunology, La Paz University Hospital, IdiPaz, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | | | - Deniz Cagdas
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Section of Pediatric Immunology, 06100 Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Section of Pediatric Immunology, 06100 Ankara, Turkey
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Esmaeil Mortaz
- Dept of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Fayezi
- Dept of Allergy and Clinical Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Ahvaz, Iran; Dept. of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Baruch Wolach
- Dept of Pediatrics and Laboratory for Leukocyte Function, Meir Medical Centre, Kfar Saba, Israel
| | | | - Hirokazu Kanegane
- Dept of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Antonio Condino-Neto
- Dept of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauno Vihinen
- Dept of Experimental Medical Science, Lund University, BMC B13, SE-22184 Lund, Sweden
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John I Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
8
|
Hematologically important mutations: X-linked chronic granulomatous disease (fourth update). Blood Cells Mol Dis 2021; 90:102587. [PMID: 34175765 DOI: 10.1016/j.bcmd.2021.102587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe bacterial and fungal infections. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide and subsequently formed other reactive oxygen species (ROS) are instrumental in killing phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients in Europe and in about 20% in countries with a high ratio of parental consanguinity. This article lists all mutations identified in CYBB and should therefore help in genetic counseling of X-CGD patients' families. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of disease-causing mutations. In addition, we also include some mutations in G6PD, the gene on the X chromosome that encodes glucose-6-phosphate dehydrogenase, because inactivity of this enzyme may lead to shortage of NADPH and thus to insufficient activity of NADPH oxidase. Severe G6PD deficiency can induce CGD-like symptoms.
Collapse
|
9
|
Lehman HK, Davé R. Candida Glabrata Lymphadenitis Following Infliximab Therapy for Inflammatory Bowel Disease in a Patient With Chronic Granulomatous Disease: Case Report and Literature Review. Front Pediatr 2021; 9:707369. [PMID: 34760850 PMCID: PMC8573330 DOI: 10.3389/fped.2021.707369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic granulomatous disease (CGD) is an inborn error of immunity caused by inactivating genetic mutations in any one of the components of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Phagocytic cell reactive oxygen species generation is impaired in the absence of a functional NADPH oxidase complex. As a result, patients with CGD are at high risk of developing deep-seated infections with certain bacteria and fungi. Additionally, aberrant inflammation and granuloma formation may occur in multiple organs including the bowels, with inflammatory bowel disease seen as a common inflammatory complication of CGD. Traditionally, TNF-α inhibitors are considered effective biological therapies for moderate-to-severe inflammatory bowel disease. While limited case series and reports of patients with CGD have shown improvement in fistula healing with use of TNF-α inhibitors, several patients have developed severe, even fatal, infections with CGD-related pathogens while on TNF-inhibitor therapy. In this case report, we describe an adolescent male with X-linked CGD and steroid-refractory colitis with perirectal fistula and abscesses, who was initiated on treatment with infliximab, a TNF-α inhibitor. Following his first two infliximab doses, the patient developed a Candida glabrata lymphadenitis and associated ulcerating oropharyngeal lesions, requiring hospitalization and therapy with amphotericin B for resolution. We compare our patient's case to prior reports of infliximab use in CGD-related inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Rahool Davé
- University at Buffalo, Buffalo, NY, United States
| |
Collapse
|