1
|
Albersammer L, Leon J, Martinovic J, Dagobert J, Lebraud E, Bessières B, Loeuillet L, Eloudzeri M, Vivanti AJ, Dumery G, Marchaudon V, Antal C, Korganow A, Quibel T, Costedoat‐Chalumeau N, Tsatsaris V, Benachi A, Zuber J, Rabant M. Histologic and molecular features shared between antibody-mediated rejection of kidney allografts and chronic histiocytic intervillositis support common pathogenesis. J Pathol 2025; 266:177-191. [PMID: 40178007 PMCID: PMC12056277 DOI: 10.1002/path.6413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
Chronic histiocytic intervillositis (CHI) is an inflammatory condition of the placenta, characterised by an abnormal, mainly macrophagic infiltrate within the intervillous space. Recent research suggests that CHI results from a 'maternal-foetal rejection' mechanism, because at least some CHI cases fulfil the criteria for antibody-mediated rejection (AMR) of kidney allografts according to the Banff classification [i.e. presence of anti-human leukocyte antigen (HLA) paternal antibodies activating the complement or foetal-specific antibodies (FSA), a macrophage-rich infiltrate, and positive C4d immunostaining]. To gain further insights into CHI pathogenesis, we aimed to refine the phenotype of the inflammatory infiltrate using a multiplex immunofluorescence technique and to compare the mRNA signatures between CHI and AMR of kidney allografts. Twelve patients with C4d+ FSA+ CHI were included in the study and compared to a control group of 5 patients without inflammatory lesions on placental examination. We developed a multiplex immunofluorescence panel to identify CD4+ and CD8+ T lymphocytes, CD68+/CD206- and CD68+/CD206+ macrophages, and NK cells in the villi and intervillous space. Molecular signatures were studied using NanoString® technology and the B-HOT panel recommended by the Banff classification for kidney allografts. Multiplex immunofluorescence revealed that the infiltrate in the intervillous space was mainly composed of CD68+/CD206- macrophages as well as a higher proportion of CD8+ lymphocytes in patients with CHI compared to controls. Densities of NK cells and CD4 T cells were very low. Molecular signatures showed an overexpression of HLA class II genes, an IFN-γ signature, and cytokine gene sets in C4d+ FSA+ CHI patients, also involved in kidney AMR. These results reinforce the paradigm of maternal-foetal rejection. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Léonie Albersammer
- Department of PathologyAssistance Publique‐Hôpitaux de Paris, Hôpital NeckerParisFrance
- Department of Obstetrics and GynecologyHôpital Antoine Béclère, AP‐HP, Université Paris SaclayClamartFrance
| | - Juliette Leon
- Department of Kidney and Metabolic DiseasesTransplantation and Clinical Immunology, Necker Hospital, AP‐HPParisFrance
| | - Jelena Martinovic
- Unit of Embryo‐Fetal Pathology, AP‐HP, Antoine Béclère Hospital, Paris Saclay UniversityClamartFrance
| | - Jessy Dagobert
- Paris Translational Research Epidemiology and Biostatistics Department, Université de Paris, INSERM U970, PARCCParisFrance
| | - Emilie Lebraud
- Necker‐Enfants Malades Institute, Inserm U1151, Université de ParisParisFrance
| | - Bettina Bessières
- Service de Médecine Génomique des Maladies Rares UF MP5Hôpital Necker‐Enfants Malades, AP‐HPParisFrance
| | - Laurence Loeuillet
- Service de Médecine Génomique des Maladies Rares UF MP5Hôpital Necker‐Enfants Malades, AP‐HPParisFrance
| | - Maëva Eloudzeri
- Necker‐Enfants Malades Institute, Inserm U1151, Université de ParisParisFrance
| | - Alexandre J. Vivanti
- Department of Obstetrics and GynecologyHôpital Antoine Béclère, AP‐HP, Université Paris SaclayClamartFrance
| | - Grégoire Dumery
- Department of Obstetrics and GynecologyAP‐HP, Hôpital BicêtreLe Kremlin‐BicêtreFrance
| | | | | | - Anne‐Sophie Korganow
- Department of Clinical Immunology and Internal MedicineNational Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University HospitalStrasbourgFrance
| | - Thibaud Quibel
- Department of Clinical Immunology and Internal MedicineNational Reference Center for Autoimmune Diseases, University Hospitals of StrasbourgStrasbourgFrance
| | | | - Vassilis Tsatsaris
- Department of Obstetrics and Gynecology Port RoyalHôpital Cochin, Université de Paris/AP‐HP, Fighting Prematurity University Hospital Federation (FHU PREMA), INSERM UMR 1139ParisFrance
| | - Alexandra Benachi
- Department of Obstetrics and GynecologyHôpital Antoine Béclère, AP‐HP, Université Paris SaclayClamartFrance
| | - Julien Zuber
- Department of Kidney and Metabolic DiseasesTransplantation and Clinical Immunology, Necker Hospital, AP‐HPParisFrance
| | - Marion Rabant
- Department of PathologyAssistance Publique‐Hôpitaux de Paris, Hôpital NeckerParisFrance
- Necker‐Enfants Malades Institute, Inserm U1151, Université de ParisParisFrance
| |
Collapse
|
2
|
Zhu X, Xu K, Ai S, Zhang Y, Chu C, Wei R, Gao S, Liu L, Li W, Zhang Y, Kikete S, Liu X, Zhang Z, Li X. miR-126-5p protects from URSA via inhibiting Caspase-1-dependent pyroptosis of trophoblast cells. Cell Mol Life Sci 2025; 82:204. [PMID: 40372489 DOI: 10.1007/s00018-025-05713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is a distressing pregnancy complication that seriously threat to women's reproductive health. Trophoblast pyroptosis was involved in the occurrence of URSA, but the potential mechanism remains unclear. In this work, we found CASP1 transcription and the level of pyroptosis were significantly elevated in the villous tissues of URSA patients. Suppression of cell pyroptosis by Gasdermin-D (GSDMD) or Caspase-1 inhibitors can reduce embryo resorption rate of URSA mice, while Caspase-1 over-expression in normal pregnant (NP) mice can aggravate embryo resorption. Meanwhile, a pronounced decline in the expression of microRNA-126-5p (miR-126-5p) was found in URSA patients, which was inversely related to CASP1 expression. Over-expression of miR-126-5p restrained trophoblast pyroptosis via inhibiting Caspase-1/GSDMD signaling pathway by direct binding to 3'-UTR of CASP1. Moreover, experiments in vivo substantiated that up-regulation of miR-126-5p effectively suppressed Caspase-1-mediated pyroptosis in placental tissue and significantly reduced embryo resorption rate. Collectively, these results underscored that diminished miR-126-5p expression plays a crucial role in URSA by enhancing trophoblast pyroptosis through activating Caspase-1/GSDMD signaling pathway. As a result, miR-126-5p shows significant promise as a possible biomarker for diagnosis and treatment of URSA.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ke Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Shuang Ai
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ran Wei
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shufeng Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lu Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wei Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Siambi Kikete
- School of Health Sciences, Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, Nairobi, 00609, Kenya
| | - Xinkui Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Changqing District, Jinan, 250399, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Sintim-Aboagye E, Quach HQ, Sherman W, Farnan S, Otrubova K, Verma N, Littlefield D, Punia S, Johnson E, Blackstad M, Schleiss MR, Norgan AP, Gray CM, Enninga EAL, Chakraborty R. Spatial Analysis of Placentae During Congenital Cytomegalovirus Infection Reveals Distinct Cellular Profiles in Immune Cells and Trophoblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647170. [PMID: 40291677 PMCID: PMC12026742 DOI: 10.1101/2025.04.04.647170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cytomegalovirus (CMV) is the most common cause of birth defects by an infectious agent. Approximately 10% of infants with congenital CMV (cCMV) infection are symptomatic. Infected infants can exhibit long-term effects such as sensorineural hearing and vision loss and neurodevelopmental delay. To date, the mechanisms by which cCMV infection results in symptomatic disease are incompletely understood. The placenta has been implicated as a main thoroughfare for vertical transmission, as both placental immune cells and trophoblasts can be infected by CMV. The goal of this study was to spatially investigate changes in genes and proteins from immune cells and trophoblasts during cCMV infection. Utilizing the NanoString GeoMx Digital Spatial Profiler, we noted that both immune cells and trophoblasts in CMV + placentae exhibited increased expression and upregulation of immune activation receptors and pathways. Pro-apoptotic proteins were decreased in CMV + placentae, as were transcripts associated with cell death pathways. Spatially, immune cells infiltrating into CMV + placental villi had more CD4 + T cells expressing cell death markers than those T cells in the decidua (p = 0.002). In contrast, the decidua exhibited a CD8+ T cell abundance with far less upregulation of immune activation receptors than in the villi (p=0.03). These data can inform and direct future research into the immune mechanisms CMV uses to infect, evade, and vertically transmit the virus to the fetus.
Collapse
|
4
|
Dimova T, Alexandrova M, Vangelov I, You Y, Mor G. The modeling of human implantation and early placentation: achievements and perspectives. Hum Reprod Update 2025; 31:133-163. [PMID: 39673726 DOI: 10.1093/humupd/dmae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/29/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited. OBJECTIVE AND RATIONALE This review highlights some features of human implantation as a unique, ineffective and difficult-to-model process and summarizes the pros and cons of the most used in vivo, ex vivo and in vitro models. We point out the variety of cell line-derived models and how these data are corroborated by well-defined primary cells of the same nature. Important aspects related to the handling, standardization, validation, and modus operandi of the advanced 3D in vitro models are widely discussed. Special attention is paid to blastocyst-like models recapitulating the hybrid phenotype and HLA profile of extravillous trophoblasts, which are a unique yet poorly understood population with a major role in the successful implantation and immune mother-embryo recognition. Despite raising new ethical dilemmas, extended embryo cultures and synthetic embryo models are also in the scope of our review. SEARCH METHODS We searched the electronic database PubMed from inception until March 2024 by using a multi-stage search strategy of MeSH terms and keywords. In addition, we conducted a forward and backward reference search of authors mentioned in selected articles. OUTCOMES Primates and rodents are valuable in vivo models for human implantation research. However, the deep interstitial, glandular, and endovascular invasion accompanied by a range of human-specific factors responsible for the survival of the fetus determines the uniqueness of the human implantation and limits the cross-species extrapolation of the data. The ex vivo models are short-term cultures, not relevant to the period of implantation, and difficult to standardize. Moreover, the access to tissues from elective terminations of pregnancy raises ethical and legal concerns. Easy-to-culture cancer cell lines have many limitations such as being prone to spontaneous transformation and lacking decent tissue characteristics. The replacement of the original human explants, primary cells or cancer cell lines with cultures of immortalized cell lines with preserved stem cell characteristics appears to be superior for in vitro modeling of human implantation and early placentation. Remarkable advances in our understanding of the peri-implantation stages have also been made by advanced three dimensional (3D) models i.e. spheroids, organoids, and assembloids, as placental and endometrial surrogates. Much work remains to be done for the optimization and standardization of these integrated and complex models. The inclusion of immune components in these models would be an asset to delineate mechanisms of immune tolerance. Stem cell-based embryo-like models and surplus IVF embryos for research bring intriguing possibilities and are thought to be the trend for the next decade for in vitro modeling of human implantation and early embryogenesis. Along with this research, new ethical dilemmas such as the moral status of the human embryo and the potential exploitation of women consenting to donate their spare embryos have emerged. The careful appraisal and development of national legal and ethical frameworks are crucial for better regulation of studies using human embryos and embryoids to reach the potential benefits for human reproduction. WIDER IMPLICATIONS We believe that our data provide a systematization of the available information on the modeling of human implantation and early placentation and will facilitate further research in this field. A strict classification of the advanced 3D models with their pros, cons, applicability, and availability would help improve the research quality to provide reliable outputs.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Huang J, Feng L, Huang J, Zhang G, Liao S. Unveiling sialoglycans' immune mastery in pregnancy and their intersection with tumor biology. Front Immunol 2024; 15:1479181. [PMID: 39759524 PMCID: PMC11695303 DOI: 10.3389/fimmu.2024.1479181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Sialylation is a typical final step of glycosylation, which is a prevalent post-translational modification of proteins. Sialoglycans, the products of sialylation, are located on the outmost of cells and participate in pivotal biological processes. They have been identified as glyco-immune checkpoints and are currently under rigorous investigation in the field of tumor research. It is noteworthy that the exploration of sialoglycans in tumor and pregnancy contexts was both initiated in the 1960s. Mechanisms in these two conditions exhibit similarities. Trophoblast infiltration during pregnancy gets controlled, while tumor invasion is uncontrolled. The maternal-fetal immunotolerance balances acceptance of the semiallogeneic fetus and resistance against "non-self" antigen attack simultaneously. Tumors mask themselves with sialoglycans as "don't eat me" signals to escape immune surveillance. The trophoblastic epithelium is covered with sialoglycans, which have been demonstrated to play an immune regulatory role throughout the entire pregnancy. Immune abnormalities are commonly recognized as an important reason for miscarriages. Therapeutic strategies that desialylation and targeting receptors of sialoglycans have been studied in tumors, while agents that target glyco-immune checkpoints have not been studied in pregnancy. Thus, investigating the roles of sialoglycans in pregnancy and their intersection with tumors may facilitate the development of novel therapies targeting glyco-immune checkpoints for the treatment of pregnancy-related diseases, such as miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jianmei Huang
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Feng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Wu XM, Li YX, Zheng HS, Zhou XT, Ke Y, Liu XP, Kang XM. The effect and mechanism of low-molecular-weight heparin on the decidualization of stromal cells in early pregnancy. J Matern Fetal Neonatal Med 2024; 37:2294701. [PMID: 38177060 DOI: 10.1080/14767058.2023.2294701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE This study aimed to analyze the effect of low-molecular-weight heparin (LMWH) on the decidualization of stromal cells in early pregnancy and explore the effect of LMWH on pregnancy outcomes. METHODS Recurrent spontaneous abortion (RSA) mouse model (CBA/J × DBA/2) and normal pregnant mouse model (CBA/J × BALB/c) were established. The female mice were checked for a mucus plug twice daily to identify a potential pregnancy. When a mucus plug was found, conception was considered to have occurred 12 h previously. The pregnant mice were divided randomly into a normal pregnancy control group, an RSA model group, and an RSA + LMWH experimental group (n = 10 mice in each group). Halfway through the 12th day of pregnancy, the embryonic loss of the mice was observed; a real-time quantitative polymerase chain reaction was used to detect the messenger ribonucleic acid (mRNA) expressions of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1) in the decidua of the mice. Additionally, the decidual tissues of patients with RSA and those of normal women in early pregnancy who required artificial abortion were collected and divided into an RSA group and a control group. Decidual stromal cells were isolated and cultured to compare cell proliferation between the two groups, and cellular migration and invasion were detected by membrane stromal cells. Western blotting was used to detect the protein expressions of proliferating cell nuclear antigen (PCNA), cyclin D1, matrix metalloproteinase- (MMP) 2, and MMP-7 in stromal cells treated with LMWH. RESULTS Compared with the RSA group, LMWH significantly reduced the pregnancy loss rate in the RSA mice (p < 0.05). Compared with the RSA group, the LMWH + RSA group had significantly higher expression levels of PRL and IGFBP1 mRNA (p < 0.01). LMWH promoted the proliferation, migration, and invasion of human decidual stromal cells; compared with the control group, the expression levels of MMP-2, MMP-7, cyclin D1, and PCNA proteins in the decidual stromal cells of the LMWH group increased (p < 0.05). CONCLUSIONS The use of LMWH can improve pregnancy outcomes by enhancing the proliferation and migration of stromal cells in early pregnancy and the decidualization of stromal cells.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yun-Xiu Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hai-Shan Zheng
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ting Zhou
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Ke
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ping Liu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Min Kang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
7
|
Rong L, Xiang L, Ai Z, Niu B, Wang Y, Yin Y, Feng C, Shi G, Chen T, Yang J, Luo X, Bai Y, Zhou X, Liu X, Zheng H, Ke Y, Li T, Wu Z. The impact of dynamic caudal type homeobox 2 expression on the differentiation of human trophoblast lineage during implantation. Cell Prolif 2024; 57:e13729. [PMID: 39161168 PMCID: PMC11628739 DOI: 10.1111/cpr.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
The trophoblast lineage differentiation represents a rate-limiting step in successful embryo implantation. Adhesion, invasion and migration processes within the trophoblast are governed by several transcription factors. Among them, CDX2 is a critical regulator shaping the destiny of the trophoblast. While its altered expression is a linchpin initiating embryo implantation in mice, the precise influence of CDX2 on the functionality and lineage differentiation of early human trophoblast remains unclear. In this study, we employed well-established human trophoblast stem cell (hTSC) lines with CDX2 overexpression coupled with a 3D in vitro culture system for early human embryos. We revealed that the downregulation of CDX2 is a prerequisite for syncytialization during human embryo implantation based on immunofluorescence, transcriptome analysis, CUT-tag sequencing and the construction of 3D human trophoblast organoids. While CDX2 overexpression inhibited syncytialization, it propelled hTSC proliferation and invasive migration. CDX2 exerted its influence by interacting with CGA, PTGS2, GCM1, LEF1 and CDH2, thereby hindering premature differentiation of the syncytiotrophoblast. CDX2 overexpression enhanced the epithelial-mesenchymal transition of human trophoblast organoids. In summary, our study provides insights into the molecular characteristics of trophoblast differentiation and development in humans, laying a theoretical foundation for advancing research in embryo implantation.
Collapse
Affiliation(s)
- Lujuan Rong
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Lifeng Xiang
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
- KUST‐YPFPH Reproductive Medicine Joint Research CenterKunmingYunnanChina
| | - Zongyong Ai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Baohua Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yaqing Wang
- University of Science and Technology of ChinaHefeiAnhuiChina
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhouJiangsuChina
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Chun Feng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Gaohui Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Jie Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Xi Luo
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- KUST‐YPFPH Reproductive Medicine Joint Research CenterKunmingYunnanChina
| | - Yun Bai
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- KUST‐YPFPH Reproductive Medicine Joint Research CenterKunmingYunnanChina
| | - Xiaoting Zhou
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- KUST‐YPFPH Reproductive Medicine Joint Research CenterKunmingYunnanChina
| | - Xiaoping Liu
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- KUST‐YPFPH Reproductive Medicine Joint Research CenterKunmingYunnanChina
| | - Haishan Zheng
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
| | - Yang Ke
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- KUST‐YPFPH Reproductive Medicine Joint Research CenterKunmingYunnanChina
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Ze Wu
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- The Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- Department of Reproductive Medicine, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China (Co‐building)The First People's Hospital of Yunnan ProvinceKunmingYunnanChina
- KUST‐YPFPH Reproductive Medicine Joint Research CenterKunmingYunnanChina
| |
Collapse
|
8
|
Uța C, Tîrziu A, Zimbru EL, Zimbru RI, Georgescu M, Haidar L, Panaitescu C. Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1896. [PMID: 39597081 PMCID: PMC11596804 DOI: 10.3390/medicina60111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Recurrent pregnancy loss (RPL) is a complex early pregnancy complication affecting 1-2% of couples and is often linked to immune dysfunction. Aberrations in T and B cell subpopulations, as well as natural killer (NK) cell activity, are particularly influential, with studies showing that abnormal NK cell activation and imbalances in T and B cell subtypes contribute to immune-mediated miscarriage risk. Successful pregnancy requires a tightly regulated balance between pro-inflammatory and anti-inflammatory immune responses. In the early stages, inflammation supports processes such as trophoblast invasion and spiral artery remodeling, but this must be tempered to prevent immune rejection of the fetus. In this review, we explore the underlying immune mechanisms of RPL, focusing on how dysregulated T, B, and NK cell function disrupts maternal tolerance. Specifically, we discuss the essential role of uterine NK cells in the early stages of vascular remodeling in the decidua and regulate the depth of invasion by extravillous trophoblasts. Furthermore, we focus on the delicate Treg dynamics that enable the maintenance of optimal immune homeostasis, where the balance, and not only the quantity of Tregs, is crucial for fostering maternal-fetal tolerance. Other T cell subpopulations, such as Th1, Th2, and Th17 cells, also contribute to immune imbalance, with Th1 and Th17 cells promoting inflammation and potentially harming fetal tolerance, while Th2 cells support immune tolerance. Finally, we show how changes in B cell subpopulations and their functions have been associated with adverse pregnancy outcomes. We further discuss current therapeutic strategies aimed at correcting these immune imbalances, including intravenous immunoglobulin (IVIg), glucocorticoids, and TNF-α inhibitors, examining their efficacy, challenges, and potential side effects. By highlighting both the therapeutic benefits and limitations of these interventions, we aim to offer a balanced perspective on clinical applications for women facing immune-related causes of RPL.
Collapse
Affiliation(s)
- Cristina Uța
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Alexandru Tîrziu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Marius Georgescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| |
Collapse
|
9
|
Luo YH, Zhang YY, Li MQ, Zhang XY, Zheng ZM. Emerging Roles of IL-27 in Trophoblast Cells and Pregnancy Complications. Am J Reprod Immunol 2024; 92:e13942. [PMID: 39422056 DOI: 10.1111/aji.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
PROBLEM Pregnancy complications such as spontaneous abortion, preeclampsia, and preterm birth persist, despite current interventions aimed at their prevention and treatment largely proving unsuccessful. Interleukin-27 (IL-27), composed of p28 and EBI3 subunits, binds to IL-27R, which consists of gp130 and IL-27Rα (also known as WSX-1 or TCCR), and plays a pivotal role in tumor development and inflammation regulation. At the maternal-fetal interface, IL-27 expression has been detected in trophoblasts, endometrial stromal cells, and decidual cells. Abnormal levels of IL-27/IL-27R have been linked to adverse pregnancy outcomes, including spontaneous miscarriage, preeclampsia, and preterm birth. This review aims to explore the expression of IL-27 at the maternal-fetal interface and its signaling pathway, uncovering the complex role of IL-27 in pregnancy complications. METHOD OF STUDY A comprehensive literature review was conducted using PubMed/Medline, Scopus, and Embase databases, analyzing studies on IL-27 expression and its signaling pathways at the maternal-fetal interface. The review focused on identifying the presence of IL-27 in various cell types and linking abnormal IL-27/IL-27R expression to pregnancy complications such as spontaneous miscarriage, preeclampsia, and preterm birth. DISCUSSION AND CONCLUSION IL-27 plays a complex role at the maternal-fetal interface, with abnormal expression linked to several pregnancy complications. These findings highlight the need for further research to elucidate IL-27's mechanisms and develop targeted interventions. Future studies should aim to develop targeted interventions and improve therapeutic strategies for managing pregnancy complications.
Collapse
Affiliation(s)
- Yi-Hua Luo
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| | - Xin-Yan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zi-Meng Zheng
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Winston T, Song Y, Shi H, Yang J, Alsudais M, Kontaridis MI, Wu Y, Gaborski TR, Meng Q, Cooney RN, Ma Z. Lineage-Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308975. [PMID: 38757640 PMCID: PMC11267277 DOI: 10.1002/advs.202308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC-to-iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.
Collapse
Affiliation(s)
- Tackla Winston
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Yuanhui Song
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Junhui Yang
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Munther Alsudais
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research Institute2150 Bleecker StreetUticaNY13501USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AveBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBuilding C, 240 Longwood AveBostonMA02115USA
| | - Yaoying Wu
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of Microbiology & ImmunologySUNY Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Thomas R. Gaborski
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Qinghe Meng
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Robert N. Cooney
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of BiologySyracuse University107 College PlSyracuseNY13210USA
| |
Collapse
|
11
|
Yao Y, Ye Y, Chen J, Zhang M, Cai X, Zheng C. Maternal-fetal immunity and recurrent spontaneous abortion. Am J Reprod Immunol 2024; 91:e13859. [PMID: 38722063 DOI: 10.1111/aji.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jia Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
12
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Shuai R, Li D, Xu X, Yang X, Liu D. Meta-analysis of FOXP3 polymorphisms and recurrent spontaneous abortion susceptibility. Am J Reprod Immunol 2024; 91:e13827. [PMID: 38433312 DOI: 10.1111/aji.13827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The polymorphisms of the FOXP3 gene may mediate abnormalities in Tregs, leading to an imbalance in maternal-fetal immune tolerance and ultimately resulting in recurrent spontaneous abortion (RSA). This meta-analysis aims to assess the potential association between FOXP3 polymorphisms and susceptibility to RSA using five specific single nucleotide polymorphisms (SNPs). MATERIALS AND METHODS By conducting a comprehensive search across databases such as EMBASE, PubMed, Web of Science, Cochrane Library, CNKI, Wanfang, and CBM, we identified suitable studies for inclusion in the meta-analysis. The data extracted from these studies were subjected to analysis using Stata SE 15. To assess the degree of association, we utilized the odds ratio (OR) along with its corresponding 95% confidence intervals (CI). Five specific single nucleotide polymorphisms (SNPs) were employed in assessing the connection between FOXP3 gene polymorphisms and RSA. RESULTS The meta-analysis demonstrated a significant association between several polymorphisms (rs3761548, rs2232365, rs2232368, rs2280883, and rs2294021) and susceptibility to RSA. Conversely, the FOXP3 rs5902434 polymorphism was not associated with susceptibility to RSA. CONCLUSION Our meta-analysis suggests that these genetic variations within the FOXP3 gene might play a role in the progression of RSA disease. Meanwhile, large-scale studies that consider multiple factors are needed to validate this finding.
Collapse
Affiliation(s)
- Ruzhen Shuai
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, China
| | - Dandan Li
- Department of Reproductive Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xincong Xu
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaojuan Yang
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, China
| | - Dan Liu
- Institute of Medical Sciences, Department of Gynecology, General Hospital of Ningxia, Medical University, Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Li Q, Song M, Cao K, Zhang Q. A Potential Role of CD82/KAI1 during Uterine Decidualization in Mice. Curr Issues Mol Biol 2024; 46:1799-1809. [PMID: 38534734 DOI: 10.3390/cimb46030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
The tumor metastasis suppressor gene CD82/KAI1 has been demonstrated to impact human trophoblast invasion and migration. Communication between trophoblasts and decidual stromal cells plays a crucial role in controlling the normal invasiveness of trophoblasts. However, whether CD82/KAI1 is involved in decidualization and what role it plays remain unclear. CD82/KAI1 demonstrates specific spatiotemporal expression patterns in stromal cells undergoing decidualization during pregnancy. This is observed in both naturally pregnant females post-implantation and pseudopregnant mice undergoing induced decidualization, as detected through in situ hybridization and immunofluorescence. CD82/KAI1 expression showed a significant time-dependent increase in cultured stromal cells after 24 and 48 h of progesterone (P4) and estrogen (E2) treatment. This was accompanied by a notable upregulation of decidualization markers, including cyclin D3 and PR. After transducing stromal cells with the adenovirus-overexpressing CD82/KAI1 for 48 h, the expression of cyclin D3 protein increased. Meanwhile, there was an attenuated expression of CD82/KAI1 due to an adenovirus siRNA knockdown, whereas cyclin D3 and PR expressions were not affected. Our findings suggest a potential role of CD82/KAI1 in regulating the process of decidualization, providing insights into stromal cell differentiation.
Collapse
Affiliation(s)
- Qijun Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| | - Mengyao Song
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cao
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| | - Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| |
Collapse
|
15
|
Xiong Y, Wang Y, Wu M, Chen S, Lei H, Mu H, Yu H, Hou Y, Tang K, Chen X, Dong J, Wang X, Chen L. Aberrant NK cell profile in gestational diabetes mellitus with fetal growth restriction. Front Immunol 2024; 15:1346231. [PMID: 38375483 PMCID: PMC10875967 DOI: 10.3389/fimmu.2024.1346231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a gestational disorder characterized by hyperglycemia, that can lead to dysfunction of diverse cells in the body, especially the immune cells. It has been reported that immune cells, specifically natural killer (NK) cells, play a crucial role in normal pregnancy. However, it remains unknown how hyperglycemia affects NK cell dysfunction thus participates in the development of GDM. In this experiment, GDM mice were induced by an intraperitoneal injection of streptozotocin (STZ) after pregnancy and it has been found that the intrauterine growth restriction occurred in mice with STZ-induced GDM, accompanied by the changed proportion and function of NK cells. The percentage of cytotoxic CD27-CD11b+ NK cells was significantly increased, while the proportion of nourished CD27-CD11b- NK cells was significantly reduced in the decidua of GDM mice. Likewise, the same trend appeared in the peripheral blood NK cell subsets of GDM patients. What's more, after intrauterine reinfusion of NK cells to GDM mice, the fetal growth restriction was alleviated and the proportion of NK cells was restored. Our findings provide a theoretical and experimental basis for further exploring the pathogenesis of GDM.
Collapse
Affiliation(s)
- Yujing Xiong
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yazhen Wang
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Mengqi Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuqiang Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Hui Lei
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Hui Mu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Haikun Yu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yongli Hou
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Kang Tang
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xutao Chen
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Jie Dong
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaohong Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Lihua Chen
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
16
|
Dal Y, Karagün Ş, Akkuş F, Çolak H, Aytan H, Coşkun A. In premature rupture of membranes, maternal serum delta neutrophil index may be a predictive factor for histological chorioamnionitis and affect fetal inflammatory markers: A retrospective cross-sectional study. Am J Reprod Immunol 2024; 91:e13823. [PMID: 38406995 DOI: 10.1111/aji.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
PROBLEM We aimed to investigate the predictive value of delta neutrophil index (DNI) for histological choriomanionitis (HCAM) and the effect of maternal inflammatory markers on neonatal outcomes and fetal inflammatory parameters. METHOD OF STUDY In this retrospective cross-sectional study, 68 pregnant women without HCAM (group 1) and 46 pregnant women diagnosed with HCAM (group 2) were divided into two groups. Demographic stories of the groups; maternal hematological parameters; maternal DNI and systemic inflammatory index (SII) values; outcomes of newborns; fetal inflammatory markers were recorded and compared between groups. RESULTS Maternal DNI, and SII levels were significantly higher in group 2 (p value < .05 for all). Admission to the neonatal unit (NICU) was higher in group 2 than in group 1 (p = .0001). We found that fetal inflammatory markers were significantly higher in group 2 (p values .001 for CRP, .0001 for DNI, and .002 for leukocyte). Maternal DNI was determined to be significantly diagnostic at a value of ≥1.3 in HCAM (p = .001). We observed that SII had a significant predictive value of 953036.6 (p = .019) for NICU admission. There is also a positive correlation between fetal inflammatory markers and maternal inflammatory markers. CONCLUSIONS We found that maternal inflammatory markers are high in HCAM, maternal DNI can predict patients who will develop HCAM, maternal SII value can predict NICU admission, fetal inflammatory markers are high in HCAM, and these markers are affected by maternal inflammatory markers.
Collapse
Affiliation(s)
- Yusuf Dal
- Department of Obstetrics and Gynecology, Division of Perinatology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Şebnem Karagün
- Department of Obstetrics and Gynecology, Division of Perinatology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Fatih Akkuş
- Department of Obstetrics and Gynecology, Division of Perinatology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Hatun Çolak
- Department of Obstetrics and Gynecology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Hakan Aytan
- Department of Obstetrics and Gynecology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ayhan Coşkun
- Department of Obstetrics and Gynecology, Division of Perinatology, Mersin University Faculty of Medicine, Mersin, Turkey
| |
Collapse
|
17
|
Pang XL, Li J, Wang J, Yan SS, Yang J. MiR-142-3p Regulates ILC1s by Targeting HMGB1 via the NF-κB Pathway in a Mouse Model of Early Pregnancy Loss. Curr Med Sci 2024; 44:195-211. [PMID: 38393528 DOI: 10.1007/s11596-024-2833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Innate lymphoid cells (ILCs) are a class of newly discovered immunocytes. Group 1 ILCs (ILC1s) are identified in the decidua of humans and mice. High mobility group box 1 (HMGB1) is predicted to be one of the target genes of miR-142-3p, which is closely related to pregnancy-related diseases. Furthermore, miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway. This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway. METHODS Mouse models of normal pregnancy and abortion were constructed, and the alterations of ILC1s, miR-142-3p, ILC1 transcription factor (T-bet), and pro-inflammatory cytokines of ILC1s (TNF-α, IFN-γ and IL-2) were detected in mice from different groups. The targeting regulation of HMGB1 by miR-142-3p in ILC1s, and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated. In addition, the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8, Annexin-V/PI, ELISA, and RT-PCR, respectively. Furthermore, changes of the NF-κB signaling pathway in ILC1s were examined in the different groups. For the in vivo studies, miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface, and further detect the expression of HMGB1, pro-inflammatory cytokines, and the NF-κB signaling pathway. RESULTS The number of ILC1s was significantly increased, the level of HMGB1 was significantly upregulated, and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice (all P<0.05). In addition, miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway (P<0.05). The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group (all P<0.05). CONCLUSION miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway, and attenuate the inflammation at the maternal-fetal interface in abortive mice.
Collapse
Affiliation(s)
- Xiang-Li Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China
| | - Jing Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Si-Si Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
18
|
Bento GFC, Richardson L, da Silva MG, Tantengco OAG, Menon R. Modeling an ascending infection by Ureaplasma parvum and its cell signaling and inflammatory response at the feto-maternal interface. Am J Reprod Immunol 2023; 90:e13770. [PMID: 37766409 PMCID: PMC10571092 DOI: 10.1111/aji.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Ascending bacterial infection is associated with ∼ 40% of spontaneous preterm birth (PTB), and Ureaplasma spp. is one of the most common bacteria isolated from the amniotic fluid. Developing novel in vitro models that mimic in vivo uterine physiology is essential to study microbial pathogenesis. We utilized the feto-maternal interface organ-on-chip (FMi-OOC) device and determined the propagation of Ureaplasma parvum, and its impact on cell signaling and inflammation. METHOD OF STUDY FMi-OOC is a microphysiologic device mimicking fetal membrane/decidua interconnected through microchannels. The impact of resident decidual CD45+ leukocytes was also determined by incorporating them into the decidual chamber in different combinations with U. parvum. We tested the propagation of live U. parvum from the decidual to the amniochorion membranes (immunocytochemistry and quantitative PCR), determined its impact on cytotoxicity (LDH assay), cell signaling (JESSTM Western Blot), cellular transition (immunostaining for vimentin and cytokeratin), and inflammation (cytokine bead array). RESULTS U. parvum transversed the chorion and reached the amnion epithelium after 72 hours but did not induce cell signaling kinases (p38MAPK and JNK) activation, or cellular transition (epithelial-mesenchymal), regardless of the presence of immune cells. The inflammatory response was limited to the choriodecidual interface and did not promote inflammation in the amnion layer. CONCLUSIONS Our data suggest that U. parvum is poorly immunogenic and does not produce massive inflammatory changes at the feto-maternal interface. We speculate that the presence of U. parvum may still compromise the feto-maternal interface making it susceptible to other pathogenic infection.
Collapse
Affiliation(s)
- Giovana Fernanda Cosi Bento
- Department of Pathology, Botucatu Medical School, São Paulo State University, São Paulo, Brazil
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | | | - Ourlad Alzeus G. Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| |
Collapse
|
19
|
Wu S, Xie H, Su Y, Jia X, Mi Y, Jia Y, Ying H. The landscape of implantation and placentation: deciphering the function of dynamic RNA methylation at the maternal-fetal interface. Front Endocrinol (Lausanne) 2023; 14:1205408. [PMID: 37720526 PMCID: PMC10499623 DOI: 10.3389/fendo.2023.1205408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
The maternal-fetal interface is defined as the interface between maternal tissue and sections of the fetus in close contact. RNA methylation modifications are the most frequent kind of RNA alterations. It is effective throughout both normal and pathological implantation and placentation during pregnancy. By influencing early embryo development, embryo implantation, endometrium receptivity, immune microenvironment, as well as some implantation and placentation-related disorders like miscarriage and preeclampsia, it is essential for the establishment of the maternal-fetal interface. Our review focuses on the role of dynamic RNA methylation at the maternal-fetal interface, which has received little attention thus far. It has given the mechanistic underpinnings for both normal and abnormal implantation and placentation and could eventually provide an entirely novel approach to treating related complications.
Collapse
Affiliation(s)
- Shengyu Wu
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Su
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Jia
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yabing Mi
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanhui Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Braun AS, Vomstein K, Reiser E, Tollinger S, Kyvelidou C, Feil K, Toth B. NK and T Cell Subtypes in the Endometrium of Patients with Recurrent Pregnancy Loss and Recurrent Implantation Failure: Implications for Pregnancy Success. J Clin Med 2023; 12:5585. [PMID: 37685653 PMCID: PMC10488644 DOI: 10.3390/jcm12175585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND RPL and RIF are challenges in reproductive medicine. The immune system plays a pivotal role in endometrial receptivity, successful implantation, and pregnancy complications. Immunological changes have been associated with RPL and RIF. Understanding immune dysregulation especially in NK and T cell subtypes may lead to better diagnostic concepts and treatments. From July 2019 to August 2020 patients with RPL and RIF underwent a standardized diagnostic procedure including endometrial biopsies. Immune cell analysis was performed using flow cytometry. Patients were contacted in March 2023 and interviewed concerning their pregnancy outcomes following diagnostics. RESULTS Out of 68 patients undergoing endometrial biopsies, 49 patients were finally included. Live birth rates were high with 72% in RPL and 86% in RIF. Immune cell analysis revealed that patients with RPL had more cytotoxic CD56dimCD16high cells, while RIF patients had more CD56+ uNK cells. RPL patients with pregnancy complications showed increased NKT cell percentages. CONCLUSION Our findings suggest specific immune changes in RPL and RIF patients, offering potential therapeutic targets. Tailored immunotherapy based on endometrial immunophenotyping might be an option, but further research is needed.
Collapse
Affiliation(s)
- Anne-Sophie Braun
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (A.-S.B.); (K.V.); (E.R.); (S.T.); (C.K.); (B.T.)
| | - Kilian Vomstein
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (A.-S.B.); (K.V.); (E.R.); (S.T.); (C.K.); (B.T.)
- Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital, Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Recurrent Pregnancy Loss Unit, Copenhagen University Hospital (Rigshospitalet and Hvidovre Hospital), 2100 Copenhagen, Denmark
| | - Elisabeth Reiser
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (A.-S.B.); (K.V.); (E.R.); (S.T.); (C.K.); (B.T.)
| | - Susanne Tollinger
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (A.-S.B.); (K.V.); (E.R.); (S.T.); (C.K.); (B.T.)
| | - Christiana Kyvelidou
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (A.-S.B.); (K.V.); (E.R.); (S.T.); (C.K.); (B.T.)
| | - Katharina Feil
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (A.-S.B.); (K.V.); (E.R.); (S.T.); (C.K.); (B.T.)
| | - Bettina Toth
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (A.-S.B.); (K.V.); (E.R.); (S.T.); (C.K.); (B.T.)
| |
Collapse
|
21
|
Zhang C, Cao J, Xu M, Wu D, Li W, Chang Y. The role of neutrophils in chorioamnionitis. Front Immunol 2023; 14:1198831. [PMID: 37475854 PMCID: PMC10354368 DOI: 10.3389/fimmu.2023.1198831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Chorioamnionitis, commonly referred to as intrauterine infection or inflammation, is pathologically defined by neutrophil infiltration and inflammation at the maternal-fetal interface. Chorioamnionitis is the common complication during late pregnancy, which lead to a series of serious consequences, such as preterm labor, preterm premature rupture of the fetal membranes, and fetal inflammatory response syndrome. During infection, a large number of neutrophils migrate to the chorio-decidua in response to chemokines. Although neutrophils, a crucial part of innate immune cells, have strong anti-inflammatory properties, over-activating them can harm the body while also eliminating pathogens. This review concentrated on the latest studies on chorioamnionitis-related consequences as well as the function and malfunction of neutrophils. The release of neutrophil extracellular traps, production of reactive oxygen species, and degranulation from neutrophils during intrauterine infection, as well as their pathological roles in complications related to chorioamnionitis, were discussed in detail, offering fresh perspectives on the treatment of chorioamnionitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin central hospital of Gynecology Obstetrics, Tianjin, China
| |
Collapse
|
22
|
Milano-Foster J, Schulz LC. RISING STARS: Approaches to modeling placental function in preeclampsia in vitro and in vivo. J Endocrinol 2023; 258:e230008. [PMID: 37014303 PMCID: PMC10330201 DOI: 10.1530/joe-23-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
Modeling preeclampsia remains difficult due to the nature of the disease and the unique characteristics of the human placenta. Members of the Hominidae superfamily have a villous hemochorial placenta that is different in structure from those of other therian mammals, including the mouse hemochorial placenta, making this common animal model less ideal for studying this disease. Human placental tissues delivered from pregnancies complicated by preeclampsia are excellent for assessing the damage the disease causes but cannot answer how or when the disease begins. Symptoms of preeclampsia manifest halfway through pregnancy or later, making it currently impossible to identify preeclampsia in human tissues obtained from an early stage of pregnancy. Many animal and cell culture models recapitulate various aspects of preeclampsia, though none can on its own completely capture the complexity of human preeclampsia. It is particularly difficult to uncover the cause of the disease using models in which the disease is induced in the lab. However, the many ways by which preeclampsia-like features can be induced in a variety of laboratory animals are consistent with the idea that preeclampsia is a two-stage disease, in which a variety of initial insults may lead to placental ischemia, and ultimately systemic symptoms. The recent development of stem cell-based models, organoids, and various coculture systems have brought in vitro systems with human cells ever closer to recapitulating in vivo events that lead to placental ischemia.
Collapse
Affiliation(s)
- Jessica Milano-Foster
- Division of Animal Sciences, 245 Bond Life Sciences Center, 1201 Rollins Dr University of Missouri, Columbia MO 65211
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology and Women’s Health, N610 Medical Sciences Building, Columbia, MO 65212
| |
Collapse
|
23
|
Yong Q, Dijkstra KL, van der Keur C, Bruijn JA, Eikmans M, Baelde HJ. MIF Increases sFLT1 Expression in Early Uncomplicated Pregnancy and Preeclampsia. Int J Mol Sci 2023; 24:10050. [PMID: 37373198 DOI: 10.3390/ijms241210050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Insufficient immune tolerance during pregnancy is associated with pathological conditions such as preeclampsia (PE). Soluble fms-like tyrosine kinase-1 (sFLT1), which exerts a role in the late stage of PE, has shown its beneficial anti-inflammatory effects in inflammation-associated diseases. Macrophage migration inhibitory factor (MIF) was reported to upregulate sFLT1 production in experimental congenital diaphragmatic hernia. However, the placental sFLT1 expression in early uncomplicated pregnancy and whether MIF can regulate sFLT1 expression in uncomplicated and preeclamptic pregnancy are unclear. We collected first-trimester placentas and term placentas from uncomplicated and preeclamptic pregnancies to investigate sFLT1 and MIF expression in vivo. Primary cytotrophoblasts (CTBs) and a human trophoblast cell line (Bewo) were used to study the regulation of MIF on sFLT1 expression in vitro. In placentas from first-trimester pregnancy, we observed a high expression of sFLT1, specifically in extravillous trophoblasts (EVTs) and syncytiotrophoblast (STB) cells. MIF mRNA levels strongly correlated with sFLT1 expression in term placentas from preeclamptic pregnancies. In in vitro experiments, sFLT1 and MIF levels increased significantly in CTBs during their differentiation to EVTs and STBs, and MIF inhibitor (ISO-1) significantly reduced sFLT1 expression in a dose-dependent manner during this process. sFLT1 showed significant upregulation with increasing doses of MIF in Bewo cells. Our results show that sFLT1 is highly expressed at the maternal-fetal interface during early pregnancy and that MIF can increase sFLT1 expression in early uncomplicated pregnancy and PE, which suggests that sFLT1 plays an essential role in the modulation of inflammation in pregnancy.
Collapse
Affiliation(s)
- Qing Yong
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Kyra L Dijkstra
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jan A Bruijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
24
|
Lou Y, Fu Z, Tian Y, Hu M, Wang Q, Zhou Y, Wang N, Zhang Q, Jin F. Estrogen-sensitive activation of SGK1 induces M2 macrophages with anti-inflammatory properties and a Th2 response at the maternal-fetal interface. Reprod Biol Endocrinol 2023; 21:50. [PMID: 37226177 DOI: 10.1186/s12958-023-01102-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Decidual macrophages participate in immune regulation at the maternal-fetal interface. Abnormal M1/M2 polarization of decidual macrophages might predispose immune maladaptation in recurrent pregnancy loss (RPL). However, the mechanism of decidual macrophage polarization is unclear. We explored the role of Estradiol (E2)-sensitive serum-glucocorticoid regulated kinase (SGK) 1 in promoting macrophage polarization and suppressing inflammation at the maternal-fetal interface. METHODS We assessed serum levels of E2 and progesterone during first trimester of pregnancy in women with or without threatened miscarriages (ended in live birth, n = 448; or early miscarriages, n = 68). For detection of SGK1 in decidual macrophages, we performed immunofluorescence labeling and western blot analysis applying decidual samples from RPL (n = 93) and early normal pregnancy (n = 66). Human monocytic THP-1 cells were differentiated into macrophages and treated with Toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS), E2, inhibitors or siRNA for in vitro analysis. Flow cytometry analysis were conducted to detect macrophages polarization. We also applied ovariectomized (OVX) mice with hormones exploring the mechanisms underlying the regulation of SGK1 activation by E2 in the decidual macrophages in vivo. RESULTS SGK1 expression down regulation in the decidual macrophages of RPL was consistent with the lower concentration and slower increment of serum E2 from 4 to 12 weeks of gestation seen in these compromised pregnancies. LPS reduced SGK1 activities, but induced the pro-inflammatory M1 phenotype of THP-1 monocyte-derived macrophages and T helper (Th) 1 cytokines that favored pregnancy loss. E2 pretreatment promoted SGK1 activation in the decidual macrophages of OVX mice in vivo. E2 pretreatment amplified SGK1 activation in TLR4-stimulated THP-1 macrophages in vitro through the estrogen receptor beta (ERβ) and PI3K pathway. E2-sensitive activation of SGK1 increased M2 macrophages and Th2 immune responses, which were beneficial to successful pregnancy, by inducing ARG1 and IRF4 transcription, which are implicated in normal pregnancy. The experiments on OVX mice have shown that pharmacological inhibition of E2 promoted nuclear translocation of NF-κB in the decidual macrophages. Further more, pharmacological inhibition or knockdown of SGK1 in TLR4-stimulated THP-1 macrophages activated NF-κB by promoting its nuclear translocation, leading to increased secretion of pro-inflammatory cytokines involved in pregnancy loss. CONCLUSION Our findings highlighted the immunomodulatory roles of E2-activated SGK1 in Th2 immune responses by priming anti-inflammatory M2 macrophages at the maternal-fetal interface, resulting in a balanced immune microenvironment during pregnancy. Our results suggest new perspectives on future preventative strategies for RPL.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Gynaecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| | - Zhujing Fu
- Department of Gynaecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
- Medical Department, Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Ye Tian
- Medical School, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Yangtze River Delta Center for Drug Evaluation and Inspection of National Medical Products Administration, Shanghai, 201210, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Qin Zhang
- Department of Gynaecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Women's Reproductive Healthy Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
25
|
Zhao X, Jiang Y, Luo S, Zhao Y, Zhao H. Intercellular communication involving macrophages at the maternal-fetal interface may be a pivotal mechanism of URSA: a novel discovery from transcriptomic data. Front Endocrinol (Lausanne) 2023; 14:973930. [PMID: 37265689 PMCID: PMC10231036 DOI: 10.3389/fendo.2023.973930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Unexplained recurrent spontaneous abortion (URSA) is a severe challenge to reproductive females worldwide, and its etiology and pathogenesis have not yet been fully clarified. Abnormal intercellular communication between macrophages (Mφ) and decidual stromal cells (DSCs) or trophoblasts has been supposed to be the key to URSA. However, the exact molecular mechanisms in the crosstalk are not yet well understood. This study aimed to explore the potential molecule mechanism that may be involved in the communication between Mφ and DSC or trophoblast cells and determine their diagnostic characteristics by using the integrated research strategy of bioinformatics analysis, machine learning and experiments. First, microarrays of decidual tissue (GSE26787, GSE165004) and placenta tissue (GSE22490) in patients with URSA, as well as microarrays involving induced decidualization (GSE94644) and macrophage polarization in vitro (GSE30595) were derived from the gene expression omnibus (GEO) database. And 721 decidua-differentially expressed genes (DEGs), 613 placenta-DEGs, 510 Mφ polarization DEGs were obtained in URSA by differential expression analysis. Then, the protein-protein interaction (PPI) network was constructed, and the hub genes were identified by CytoHubba in Cytoscape software and validated by real-time PCR assay. Subsequently, immune enrichment analysis on decidua-DEGs and placenta-DEGs by ClueGO verified their regulation effects on Mφ. Besides, functional enrichment analysis was performed on Mφ polarization DEGs and the essential module genes derived from the weighted gene co-expression network analysis (WGCNA) to uncover the biological function that were related to abnormal polarization of Mφ. Furthermore, we screened out 29, 43 and 22 secreted protein-encoding genes from DSC-DEGs, placenta-DEGs and Mφ polarization DEGs, respectively. Besides, the hub secreted-protein-encoding genes were screened by CytoHubba. Moreover, we conducted functional enrichment analysis on these genes. And spearman correlation analysis between hub secreted-protein-encoding genes from donor cells and hub genes in recipient cells was performed to further understand the molecular mechanism of intercellular communication further. Moreover, signature genes with diagnostic value were screened from secreted protein-encoding genes by machine learning and validated by immunofluorescence co-localization analysis with clinical samples. Finally, three biomarkers of DSCs (FGF9, IL1R2, NID2) and three biomarkers of Mφ (CFB, NID2, CXCL11) were obtained. In conclusion, this project provides new ideas for understanding the mechanism regulatory network of intercellular communication involving macrophages at the maternal-fetal interface of URSA. Also, it provides innovative insights for the diagnosis and treatment of URSA.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiling Luo
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Huang CC, Hsueh YW, Chang CW, Hsu HC, Yang TC, Lin WC, Chang HM. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol 2023; 11:1200330. [PMID: 37266451 PMCID: PMC10230101 DOI: 10.3389/fcell.2023.1200330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Early pregnancy is a complex and well-orchestrated differentiation process that involves all the cellular elements of the fetal-maternal interface. Aberrant trophoblast-decidual interactions can lead to miscarriage and disorders that occur later in pregnancy, including preeclampsia, intrauterine fetal growth restriction, and preterm labor. A great deal of research on the regulation of implantation and placentation has been performed in a wide range of species. However, there is significant species variation regarding trophoblast differentiation as well as decidual-specific gene expression and regulation. Most of the relevant information has been obtained from studies using mouse models. A comprehensive understanding of the physiology and pathology of human implantation and placentation has only recently been obtained because of emerging advanced technologies. With the derivation of human trophoblast stem cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell type-specific transcript profiles and functions were generated, and each exhibited a unique signature. Additionally, through integrative transcriptomic information, researchers can uncover the cellular dysfunction of embryonic and placental cells in peri-implantation embryos and the early pathological placenta. In fact, the clinical utility of fetal-maternal cellular trafficking has been applied for the noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy complications. Furthermore, recent studies have proposed a viable path toward the development of therapeutic strategies targeting placenta-enriched molecules for placental dysfunction and diseases.
Collapse
|
27
|
Chen W, Yang Q, Hu L, Wang M, Yang Z, Zeng X, Sun Y. Shared diagnostic genes and potential mechanism between PCOS and recurrent implantation failure revealed by integrated transcriptomic analysis and machine learning. Front Immunol 2023; 14:1175384. [PMID: 37261354 PMCID: PMC10228695 DOI: 10.3389/fimmu.2023.1175384] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine metabolic disorder that affects 5-10% of women of reproductive age. The endometrium of women with PCOS has altered immune cells resulting in chronic low-grade inflammation, which attribute to recurrent implantation failure (RIF). In this study, we obtained three PCOS and RIF datasets respectively from the Gene Expression Omnibus (GEO) database. By analyzing differentially expressed genes (DEGs) and module genes using weighted gene co-expression networks (WGCNA), functional enrichment analysis, and three machine learning algorithms, we identified twelve diseases shared genes, and two diagnostic genes, including GLIPR1 and MAMLD1. PCOS and RIF validation datasets were assessed using the receiver operating characteristic (ROC) curve, and ideal area under the curve (AUC) values were obtained for each disease. Besides, we collected granulosa cells from healthy and PCOS infertile women, and endometrial tissues of healthy and RIF patients. RT-PCR was used to validate the reliability of GLIPR1 and MAMLD1. Furthermore, we performed gene set enrichment analysis (GSEA) and immune infiltration to explore the underlying mechanism of PCOS and RIF cooccurrence. Through the functional enrichment of twelve shared genes and two diagnostic genes, we found that both PCOS and RIF patients had disturbances in metabolites related to the TCA cycle, which eventually led to the massive activation of immune cells.
Collapse
Affiliation(s)
- Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linli Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyao Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Emerging Roles of Endocannabinoids as Key Lipid Mediators for a Successful Pregnancy. Int J Mol Sci 2023; 24:ijms24065220. [PMID: 36982295 PMCID: PMC10048990 DOI: 10.3390/ijms24065220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, Cannabis use/misuse for treating pregnancy-related symptoms and other chronic conditions has increased among pregnant women, favored by decriminalization and/or legalization of its recreational uses in addition to its easy accessibility. However, there is evidence that prenatal Cannabis exposure might have adverse consequences on pregnancy progression and a deleterious impact on proper neurodevelopmental trajectories in the offspring. Maternal Cannabis use could interfere with the complex and finely controlled role performed by the endocannabinoid system in reproductive physiology, impairing multiple gestational processes from blastocyst implantation to parturition, with long-lasting intergenerational effects. In this review, we discuss current clinical and preclinical evidence regarding the role of endocannabinoids in development, function, and immunity of the maternal–fetal interface, focusing on the impact of Cannabis constituents on each of these gestational processes. We also discuss the intrinsic limitations of the available studies and the future perspectives in this challenging research field.
Collapse
|
29
|
Polcz VE, Rincon JC, Hawkins RB, Barrios EL, Efron PA, Moldawer LL, Larson SD. TRAINED IMMUNITY: A POTENTIAL APPROACH FOR IMPROVING HOST IMMUNITY IN NEONATAL SEPSIS. Shock 2023; 59:125-134. [PMID: 36383390 PMCID: PMC9957873 DOI: 10.1097/shk.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABSTRACT Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.
Collapse
Affiliation(s)
- Valerie E Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | |
Collapse
|
30
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
31
|
Micro-RNAs in Human Placenta: Tiny Molecules, Immense Power. Molecules 2022; 27:molecules27185943. [PMID: 36144676 PMCID: PMC9501247 DOI: 10.3390/molecules27185943] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 12/06/2022] Open
Abstract
Micro-RNAs (miRNAs) are short non-coding single-stranded RNAs that modulate the expression of various target genes after transcription. The expression and distribution of kinds of miRNAs have been characterized in human placenta during different gestational stages. The identified miRNAs are recognized as key mediators in the regulation of placental development and in the maintenance of human pregnancy. Aberrant expression of miRNAs is associated with compromised pregnancies in humans, and dysregulation of those miRNAs contributes to the occurrence and development of related diseases during pregnancy, such as pre-eclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM), recurrent miscarriage, preterm birth (PTB) and small-for-gestational-age (SGA). Thus, having a better understanding of the expression and functions of miRNAs in human placenta during pregnancy and thereby developing novel drugs targeting the miRNAs could be a potentially promising method in the prevention and treatment of relevant diseases in future. Here, we summarize the current knowledge of the expression pattern and function regulation of miRNAs in human placental development and related diseases.
Collapse
|
32
|
Yang Y, Wang W, Weng J, Li H, Ma Y, Liu L, Ma W. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front Immunol 2022; 13:976289. [PMID: 36105800 PMCID: PMC9465335 DOI: 10.3389/fimmu.2022.976289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
The HLA class Ib molecule is an alloantigen that causes transplant rejection on behalf of individual human and plays an important role in maternal-fetal immune tolerance. Early studies on HLA class Ib focused on the mechanism of HLA-G-induced immune escape, but in recent years, studies on the mechanism of HLA-G have deepened and gradually explored the mechanism of HLA-E and HLA-F, which are also HLA class Ib molecules. In the maternal-fetal interface, trophoblast cells express HLA class Ib molecules to protect the fetus from maternal immune cells by binding to inhibitory receptors of decidual immune cells (DICs) and shifting Th1/Th2 balance toward Th2 bias. Further studies on the molecular mechanism of HLA class Ib molecules provide a reference for its application in the field of clinical assisted reproduction.
Collapse
Affiliation(s)
- Yiran Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing Weng, ; Lingyan Liu,
| | - Huifang Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yanmin Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing Weng, ; Lingyan Liu,
| | - Wei Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Lan X, Guo L, Zhu S, Cao Y, Niu Y, Han S, Li Z, Li Y, Yan J. First-Trimester Serum Cytokine Profile in Pregnancies Conceived After Assisted Reproductive Technology (ART) With Subsequent Pregnancy-Induced Hypertension. Front Immunol 2022; 13:930582. [PMID: 35844528 PMCID: PMC9283642 DOI: 10.3389/fimmu.2022.930582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Pregnancy-induced hypertension (PIH) is one of the most common pregnancy complications that seriously affects the mother and fetus. The incidence of PIH is higher in pregnancies conceived after assisted reproductive technology (ART) than in spontaneous pregnancies; thus, exploring potential serum biomarkers before PIH onset is of great significance for effective early prediction and prevention of PIH in the ART population. Cytokines are involved in the inflammatory response and immune regulation, which play an essential role in the pathogenesis of PIH. A description of the cytokine profile in the first trimester of pregnancy could help identify new diagnostic tools and develop targeted therapies for PIH in the ART population. The concentrations of classical predictive markers for PIH and another 48 cytokines were measured in the first-trimester pregnancy serum samples from 33 PIH patients and 33 matched normotensive controls (NC), both of whom conceived after ART treatment. The measured values were compared and analyzed between NC and PIH, followed by comprehensive bioinformatic analysis and logistic regression analysis. There was no significant difference in classical predictive markers, including Activin A, PlGF, sFLT1 (VEGFR), and sFLT1/PlGF, between the PIH and NC groups (P > 0.05), while 29 cytokines were significantly lower in the PIH group than in the NC group (P < 0.05). Logistic regression analysis revealed that 17 cytokines (IL-2Rα, M-CSF, IL-6, IL-2, β-NGF, IL-7, IL-12 (p70), SCF, IL-10, IL-9, MIG, GM-CSF, LIF, IL-1α, MCP-3, IL-4, and HGF) in the first-trimester pregnancy serum were significantly negatively correlated with the subsequent onset of PIH. With the top 3 cytokines (IL-7, MIG, and SCF) of receiver operating characteristic (ROC) analysis, we constructed an efficient multifactor combined detection and prediction model for PIH in ART pregnancy. Classical early predictors for hypertensive disorder complicating pregnancy cannot distinguish PIH from their normal peers in ART pregnancy. In comparison, the description of the cytokine profile in the first trimester of pregnancy enables us to distinguish high-risk ART pregnancy for PIH, permitting enough time for PIH prevention therapy. The cytokine profile we described also provides immunological insight into the further mechanistic exploration of PIH.
Collapse
Affiliation(s)
- Xiangxin Lan
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Ling Guo
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Shiqin Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Shuwen Han
- School of Biomedical Sciences, Shandong University, Jinan, China
| | - Zeyan Li
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Junhao Yan, ; Yan Li,
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Junhao Yan, ; Yan Li,
| |
Collapse
|
34
|
Zha Y, Liu H, Lin X, Yu L, Gao P, Li Y, Wu M, Gong X, Bian X, Kang Q, Zhi P, Dang X, Wang J, Feng L, Qiao F, Huang Y, Zeng W. Immune Deviation in the Decidua During Term and Preterm Labor. Front Immunol 2022; 13:877314. [PMID: 35757768 PMCID: PMC9226582 DOI: 10.3389/fimmu.2022.877314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The maternal-fetal immune disorder is considered to be an important factor of preterm birth (PTB); however, the underlying mechanism is still not fully understood. This study was designed to explore the innate and adaptive immune features in the decidua during term and preterm labor. Women delivered at term or preterm were classified into four groups: term not in labor (TNL, N=19), term in labor (TL, N=17), preterm not in labor (PNL, N=10), and preterm in labor (PIL, N=10). Decidua basalis and parietalis were collected and analyzed for macrophage subtypes (M1 and M2) as well as T helper 1 (Th1), Th2, Th17 and regulatory T (Treg) cells by flow cytometry and immunohistochemistry. Our results demonstrated significantly decreased frequencies of M2 cells and elevated M1/M2 ratio in the PIL group compared to that in the PNL group in both decidua basalis and parietalis, whereas no significant differences were found between the above two groups in both sites in terms of the polarization status of Th cells. On the contrary, macrophage subsets were comparable in the TL and TNL groups, whereas elevated Th1 percentages and Th1/Th2 ratio were observed in TL women compared to that in TNL women in the decidua. Interestingly, although the frequencies and ratios of Th17 and Treg were comparable among the four groups, the Th17/Treg ratios of these groups were significantly increased in decidua basalis than that in decidua parietalis. Collectively, the M1/M2 imbalance is associated with the breakdown of maternal-fetal immune tolerance during PTB, whereas the aberrant Th1/Th2 profile plays an important role in immune disorder during term labor. Moreover, Th17/Treg deviation is more remarkable in decidua basalis than in decidua parietalis.
Collapse
Affiliation(s)
- Ying Zha
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingguang Lin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Gong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Bian
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohe Dang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|
36
|
Deletion of ACLY Disrupts Histone Acetylation and IL-10 Secretion in Trophoblasts, Which Inhibits M2 Polarization of Macrophages: A Possible Role in Recurrent Spontaneous Abortion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5216786. [PMID: 35602106 PMCID: PMC9117018 DOI: 10.1155/2022/5216786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
Changes to macrophage polarization affect the local microenvironment of the placenta, resulting in pathological pregnancy diseases such as recurrent spontaneous abortion (RSA). Macrophages are in close contact with trophoblasts during placental development, and trophoblast-derived cytokines are important regulators of macrophage polarization and function. Histone acetylation can affect the expression and secretion of cytokines, and ATP citrate lyase (ACLY) is an important factor that regulates histone acetylation. The aim of this study was to investigate the effect of ACLY expression differences in trophoblast on macrophage polarization and its mechanism. Our data demonstrate that ACLY level in placental villi of patients with RSA is decreased, which may lead to the inhibition of histone acetylation in trophoblasts, thereby reducing the secretion of IL-10. Reduced IL-10 secretion activates endoplasmic reticulum stress in macrophages, thus inhibiting their M2 polarization.
Collapse
|
37
|
Shao X, Yu W, Yang Y, Wang F, Yu X, Wu H, Ma Y, Cao B, Wang YL. The mystery of the life tree: the placenta. Biol Reprod 2022; 107:301-316. [PMID: 35552600 DOI: 10.1093/biolre/ioac095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta is the interface between the fetal and maternal environments during mammalian gestation, critically safeguarding the health of the developing fetus and the mother. Placental trophoblasts origin from embryonic trophectoderm that differentiates into various trophoblastic subtypes through villous and extravillous pathways. The trophoblasts actively interact with multiple decidual cells and immune cells at the maternal-fetal interface and thus construct fundamental functional units, which are responsible for blood perfusion, maternal-fetal material exchange, placental endocrine, immune tolerance, and adequate defense barrier against pathogen infection. Various pregnant complications are tightly associated with the defects in placental development and function maintenance. In this review, we summarize the current views and our recent progress on the mechanisms underlying the formation of placental functional units, the interactions among trophoblasts and various uterine cells, as well as the placental barrier against pathogen infections during pregnancy. The involvement of placental dysregulation in adverse pregnancy outcomes is discussed.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun Yang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yeling Ma
- Medical College, Shaoxing University, Shaoxing, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Liu D, Huang X, Xu Z, Chen M, Wu M. Predictive value of NLR and PLR in missed miscarriage. J Clin Lab Anal 2022; 36:e24250. [PMID: 35103988 PMCID: PMC8906043 DOI: 10.1002/jcla.24250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background The aim of the study was to investigate the predictive value of neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) in missed miscarriage. Methods In this retrospective cohort study, a total of 400 women (involving 200 with missed early miscarriage and 200 with normal pregnancy but terminate by artificial abortion) were included. General clinical data and complete blood count (CBC) such as white blood cells (WBC), red blood cells (RBC), platelet (PLT), red blood cell distribution width‐standard deviation (RDW‐SD), platelet distribution width (PDW), mean platelet volume (MPV), neutrophil count, and lymphocyte count were collected, and the NLR and PLR were calculated for both groups. Receiver operating characteristic curve (ROC) was used to calculate the predictive value. Results There was no significant difference in the WBC, RBC, PLT, RDW‐SD, PDW, neutrophil, lymphocyte, NLR, and PLR between the two groups (p > 0.05).But MPV was lower in the missed early miscarriage group than in the control group (p < 0.05), and the area under the working curve (AUC) of ROC was 0.58, specificity and sensitivity was 69% and 47%, respectively. Conclusion NLR and PLR were not the suitable indictor for missed miscarriage, but MPV should be a concern in the first trimester.
Collapse
Affiliation(s)
- Dan Liu
- Department of Women's HealthCare, Affiliated Foshan Women and Children Hospital, Southern Medical University, Foshan, China
| | - Xinyan Huang
- Department of Women's HealthCare, Affiliated Foshan Women and Children Hospital, Southern Medical University, Foshan, China
| | - Zhengxian Xu
- Department of Women's HealthCare, Affiliated Foshan Women and Children Hospital, Southern Medical University, Foshan, China
| | - Minzhi Chen
- Department of Women's HealthCare, Affiliated Foshan Women and Children Hospital, Southern Medical University, Foshan, China
| | - Manyu Wu
- Department of Women's HealthCare, Affiliated Foshan Women and Children Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
39
|
Skarzynski DJ, Bazer FW, Maldonado-Estrada JG. Editorial: Veterinary Reproductive Immunology. Front Vet Sci 2022; 8:823169. [PMID: 35083310 PMCID: PMC8784508 DOI: 10.3389/fvets.2021.823169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dariusz J. Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Juan G. Maldonado-Estrada
- OHVRI Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Juan G. Maldonado-Estrada
| |
Collapse
|
40
|
Qin XY, Shen HH, Zhou WJ, Mei J, Lu H, Tan XF, Zhu R, Zhou WH, Li DJ, Zhang T, Ye JF, Li MQ. Insight of Autophagy in Spontaneous Miscarriage. Int J Biol Sci 2022; 18:1150-1170. [PMID: 35173545 PMCID: PMC8771834 DOI: 10.7150/ijbs.68335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022] Open
Abstract
In some cases of spontaneous miscarriage (SM), the exact etiology cannot be determined. Autophagy, which is responsible for cellular survival under stress conditions, has also been implicated in many diseases. Recently, it is also surmised to be correlated with SM. However, the detailed mechanism remains elusive. In fact, there are several essential steps during pregnancy establishment and maintenance: trophoblasts invasion, placentation, decidualization, enrichment and infiltration of decidua immune cells (e.g., natural killer, macrophage and T cells). Accordingly, upstream molecules and downstream effects of autophagy are discussed in these processes, respectively. Of note, autophagy regulates the crosstalk between these cells at the maternal-fetal interface as well. Aberrant autophagy is found in villi, decidual stromal cells, peripheral blood mononuclear cells in SM patients, although the findings are inconsistent among different studies. Furthermore, potential treatments targeting autophagy are included, during which rapamycin and vitamin D are hot-spots in recent literatures. To conclude, a moderately activated autophagy is deeply involved in pregnancy, suggesting that autophagy should be a regulator and promising target for treating SM.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Han Lu
- Departments of Assisted Reproduction, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Xiao-Fang Tan
- Reproductive Medicine Centre, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226006, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, People's Republic of China
| | - Wen-Hui Zhou
- Medicine Centre for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China
| |
Collapse
|
41
|
Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk Between Trophoblast and Macrophage at the Maternal-Fetal Interface: Current Status and Future Perspectives. Front Immunol 2021; 12:758281. [PMID: 34745133 PMCID: PMC8566971 DOI: 10.3389/fimmu.2021.758281] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The immune tolerance microenvironment is crucial for the establishment and maintenance of pregnancy at the maternal-fetal interface. The maternal-fetal interface is a complex system containing various cells, including lymphocytes, decidual stromal cells, and trophoblasts. Macrophages are the second-largest leukocytes at the maternal-fetal interface, which has been demonstrated to play essential roles in remodeling spiral arteries, maintaining maternal-fetal immune tolerance, and regulating trophoblast's biological behaviors. Many researchers, including us, have conducted a series of studies on the crosstalk between macrophages and trophoblasts at the maternal-fetal interface: on the one hand, macrophages can affect the invasion and migration of trophoblasts; on the other hand, trophoblasts can regulate macrophage polarization and influence the state of the maternal-fetal immune microenvironment. In this review, we systemically introduce the functions of macrophages and trophoblasts and the cell-cell interaction between them for the establishment and maintenance of pregnancy. Advances in this area will further accelerate the basic research and clinical translation of reproductive medicine.
Collapse
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaopeng Cai
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Periimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
42
|
Li Y, Chen J, Lin Y, Xu L, Sang Y, Li D, Du M. Obesity Challenge Drives Distinct Maternal Immune Response Changes in Normal Pregnant and Abortion-Prone Mouse Models. Front Immunol 2021; 12:694077. [PMID: 34177956 PMCID: PMC8219966 DOI: 10.3389/fimmu.2021.694077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is prevalent among women of reproductive age and is associated with increased risk of developing multiple pregnancy disorders. Pregnancy must induce immune tolerance to avoid fetal rejection, while obesity can cause chronic inflammation through activating the immune system. Impaired maternal immuno-tolerance leads to pregnancy failure, such as recurrent spontaneous abortion (RSA), one of the most common complications during early pregnancy. How does maternal immune response change under obesity stress in normal pregnancy and RSA? In turn, is obesity affected by different gestational statuses? Limited information is presently available now. Our study investigated pregnancy outcomes and maternal immune responses in two murine models (normal pregnancy and spontaneous abortion models) after obesity challenge with a high-fat diet (HFD). Abortion-prone mice fed HFD had significantly higher weight gains during pregnancy than normal pregnant mice with HFD feeding. Nonetheless, the embryo implantation and resorption rates were comparable between HFD and normal chow diet (NCD)-fed mice in each model. Evaluation of immune cell subsets showed HFD-induced obesity drove the upregulation of activated NK cell-activating receptor (NKp46)+ NK cells and pro-inflammatory macrophages (MHCIIhigh Mφ) as well as CD4+ and CD8+ T cells in the normal pregnancy group. However, in the abortion-prone group, relative more immature NK cells with decreased activity phenotypes were found in obese mice. Moreover, there were increased DCreg (CD11bhigh DC) cells and decreased CD4+ and CD8+ T cells detected in the HFD abortion-prone mice relative to those fed the NCD diet. Our findings reveal how pregnancy obesity and maternal immune regulation are mutually influenced. It is worth noting that the abortion-prone model where active maternal immune status was intensified by obesity, in turn stimulated an overcompensation response, leading to an over-tolerized immune status, and predisposing to potential risks of perinatal complications.
Collapse
MESH Headings
- Abortion, Habitual/immunology
- Abortion, Habitual/metabolism
- Abortion, Habitual/physiopathology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Female
- Gestational Weight Gain
- Histocompatibility, Maternal-Fetal
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Obesity, Maternal/immunology
- Obesity, Maternal/metabolism
- Obesity, Maternal/physiopathology
- Phenotype
- Pregnancy
- Uterus/immunology
- Uterus/metabolism
- Uterus/physiopathology
- Mice
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiajia Chen
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yikong Lin
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Sang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|