1
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2025; 292:1330-1356. [PMID: 38817090 PMCID: PMC11607183 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | | | - Kristina Hill
- Department of Biological Sciences, Boise State University, Boise, ID 83725
| | | |
Collapse
|
2
|
Ma Q, Augusto DG, Montero-Martin G, Caillier SJ, Osoegawa K, Cree BAC, Hauser SL, Didonna A, Hollenbach JA, Norman PJ, Fernandez-Vina M, Oksenberg JR. High-resolution DNA methylation screening of the major histocompatibility complex in multiple sclerosis. Front Neurol 2023; 14:1326738. [PMID: 38145128 PMCID: PMC10739394 DOI: 10.3389/fneur.2023.1326738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background The HLA-DRB1 gene in the major histocompatibility complex (MHC) region in chromosome 6p21 is the strongest genetic factor identified as influencing multiple sclerosis (MS) susceptibility. DNA methylation changes associated with MS have been consistently detected at the MHC region. However, understanding the full scope of epigenetic regulations of the MHC remains incomplete, due in part to the limited coverage of this region by standard whole genome bisulfite sequencing or array-based methods. Methods We developed and validated an MHC capture protocol coupled with bisulfite sequencing and conducted a comprehensive analysis of the MHC methylation landscape in blood samples from 147 treatment naïve MS study participants and 129 healthy controls. Results We identified 132 differentially methylated region (DMRs) within MHC region associated with disease status. The DMRs overlapped with established MS risk loci. Integration of the MHC methylome with human leukocyte antigen (HLA) genetic data indicate that the methylation changes are significantly associated with HLA genotypes. Using DNA methylation quantitative trait loci (mQTL) mapping and the causal inference test (CIT), we identified 643 cis-mQTL-DMRs paired associations, including 71 DMRs possibly mediating causal relationships between 55 single nucleotide polymorphisms (SNPs) and MS risk. Results The results describe MS-associated methylation changes in MHC region and highlight the association between HLA genotypes and methylation changes. Results from the mQTL and CIT analyses provide evidence linking MHC region variations, methylation changes, and disease risk for MS.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Danillo G. Augusto
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Gonzalo Montero-Martin
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
- HLA Histocompatibility and Immunogenetics Laboratory, Vitalant, Phoenix, AZ, United States
| | - Stacy J. Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Kazutoyo Osoegawa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Paul J. Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Marcelo Fernandez-Vina
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Lemieux W, Richard L, Nunes JM, Sanchez-Mazas A, Renaud C, Sapir-Pichhadze R, Lewin A. A registry-based population study of the HLA in Québec, Canada. HLA 2023; 102:671-689. [PMID: 37439270 DOI: 10.1111/tan.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
As part of the worldwide effort to better characterize HLA diversity in populations, we have studied the population of Québec in Canada. This province has been defined by a complex history with multiple founder effects and migration patterns. We analyzed the typing data of 3806 individuals registered in Héma-Québec's Registry, which covered most administrative regions in Québec. Typing information was resolved at the second field level of resolution by next-generation sequencing (NGS) or by Sanger sequencing. We used the HLA-net.eu GENE[RATE] tools to estimate allele and two-locus haplotype frequencies for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1, as well as Hardy-Weinberg equilibrium (HWE), selective neutrality, and linkage disequilibrium. The chord genetic distance was also calculated between administrative regions and was visualized using non-metric multidimensional scaling (NMDS) analysis. While most individual regions were in HWE, HWE was rejected for the province considered as a whole. Some regions exhibited signatures of selection, mostly toward an excess of heterozygotes. Allele and haplotype frequencies revealed outlier regions that strongly differed from the other regions. NMDS plots also showed differences between regions. The administrative regions of the province of Québec displayed heterogeneity in their HLA profiles. This heterogeneity was attributable to differing allele and haplotype specificities by region. In particular, regions 02-Saguenay-Lac-Saint-Jean and 01-Bas-St-Laurent diverged from the rest of the regions. The urban regions 06-Montréal and 13-Laval were very diversified in their HLA profiles. Together, these results will help optimize donor recruitment strategies in Québec.
Collapse
Affiliation(s)
- William Lemieux
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
| | - Lucie Richard
- Transfusion Medicine/Reference Laboratory, Héma-Québec, Montréal, Quebec, Canada
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Christian Renaud
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
- Division of Nephrology and the Multi-Organ Transplant Program, Royal Victoria Hospital, McGill University Health Centre, Montréal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | - Antoine Lewin
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Patrick MT, Nair RP, He K, Stuart PE, Billi AC, Zhou X, Gudjonsson JE, Oksenberg JR, Elder JT, Tsoi LC. Shared Genetic Risk Factors for Multiple Sclerosis/Psoriasis Suggest Involvement of Interleukin-17 and Janus Kinase-Signal Transducers and Activators of Transcription Signaling. Ann Neurol 2023; 94:384-397. [PMID: 37127916 PMCID: PMC10524664 DOI: 10.1002/ana.26672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Psoriasis and multiple sclerosis (MS) are complex immune diseases that are mediated by T cells and share multiple comorbidities. Previous studies have suggested psoriatic patients are at higher risk of MS; however, causal relationships between the two conditions remain unclear. Through epidemiology and genetics, we provide a comprehensive understanding of the relationship, and share molecular factors between psoriasis and MS. METHODS We used logistic regression, trans-disease meta-analysis and Mendelian randomization. Medical claims data were included from 30 million patients, including 141,544 with MS and 742,919 with psoriasis. We used genome-wide association study summary statistics from 11,024 psoriatic, 14,802 MS cases, and 43,039 controls for trans-disease meta-analysis, with additional summary statistics from 5 million individuals for Mendelian randomization. RESULTS Psoriatic patients have a significantly higher risk of MS (4,637 patients with both diseases; odds ratio [OR] 1.07, p = 1.2 × 10-5 ) after controlling for potential confounders. Using inverse variance and equally weighted trans-disease meta-analysis, we revealed >20 shared and opposing (direction of effect) genetic loci outside the major histocompatibility complex that showed significant genetic colocalization (in COLOC and COLOC-SuSiE v5.1.0). Co-expression analysis of genes from these loci further identified distinct clusters that were enriched among pathways for interleukin-17/tumor necrosis factor-α (OR >39, p < 1.6 × 10-3 ) and Janus kinase-signal transducers and activators of transcription (OR 35, p = 1.1 × 10-5 ), including genes, such as TNFAIP3, TYK2, and TNFRSF1A. Mendelian randomization found psoriasis as an exposure has a significant causal effect on MS (OR 1.04, p = 5.8 × 10-3 ), independent of type 1 diabetes (OR 1.05, p = 4.3 × 10-7 ), type 2 diabetes (OR 1.08, p = 2.3 × 10-3 ), inflammatory bowel disease (OR 1.11, p = 1.6 × 10-11 ), and vitamin D level (OR 0.75, p = 9.4 × 10-3 ). INTERPRETATION By investigating the shared genetics of psoriasis and MS, along with their modifiable risk factors, our findings will advance innovations in treatment for patients suffering from comorbidities. ANN NEUROL 2023;94:384-397.
Collapse
Affiliation(s)
- Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin He
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip E. Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Xiang Zhou
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jorge R. Oksenberg
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - James T. Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Khan T, Ledoux IM, Aziz F, Al Ali F, Chin-Smith E, Ata M, Karim MY, Marr N. Associations between HLA class II alleles and IgE sensitization to allergens in the Qatar Biobank cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100117. [PMID: 37779520 PMCID: PMC10509938 DOI: 10.1016/j.jacig.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 10/03/2023]
Abstract
Background Allergic disorders are the consequence of IgE sensitization to allergens. Population studies have shown that certain human leukocyte antigen (HLA) alleles are associated with increased or decreased risk of developing allergy. Objective We aimed to characterize the relationship between HLA class II allelic diversity and IgE sensitization in an understudied Arab population. Methods We explored associations between IgE sensitization to 7 allergen mixes and mesquite (comprising 41 food or aeroallergens) and 45 common classical HLA class II alleles in a well-defined cohort of 797 individuals representing the general adult population of Qatari nationals and long-term residents. To do so, we performed HLA calling from whole genome sequencing data at 2-field resolution using 2 independent algorithms. We then applied 3 different regression models to assess either each allergen mix independently, in the context of IgE sensitization to other allergens tested, or polysensitization. Results More than half (n = 447) of the study participants showed IgE sensitization to at least 1 allergen, most of them (n = 400) to aeroallergens (Phadiatop). We identified statistically significant negative and positive associations with 24 HLA class II alleles. These have been reported to confer risk or protection from variety of diseases; however, only a few have previously been associated with allergy in other populations. Conclusions Our study reveals several new risk and protective genetic markers for allergen-specific IgE sensitization. This is a first and essential step toward a better understanding of the origins of allergic diseases in this understudied population.
Collapse
Affiliation(s)
- Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Computational Science, The Jackson Laboratory, Farmington, Conn
| | | | - Ferdousey Aziz
- the Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | | | - Manar Ata
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mohammed Yousuf Karim
- the Department of Pathology, Sidra Medicine, Doha, Qatar
- the College of Medicine, Qatar University, Doha, Qatar
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- the College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Institute of Translational Immunology, Brandenburg Medical School, Brandenburg an der Havel, Germany
| |
Collapse
|
6
|
Akel O, Zhao LP, Geraghty DE, Lind A. High-resolution HLA class II sequencing of Swedish multiple sclerosis patients. Int J Immunogenet 2022; 49:333-339. [PMID: 35959717 PMCID: PMC9545082 DOI: 10.1111/iji.12594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
Multiple sclerosis (MS) is a chronic neurological disease believed to be caused by autoimmune pathogenesis. The aetiology is likely explained by a complex interplay between inherited and environmental factors. Genetic investigations into MS have been conducted for over 50 years, yielding >100 associations to date. Globally, the strongest linkage is with the human leukocyte antigen (HLA) HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype. Here, high-resolution sequencing of HLA was used to determine the alleles of DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1 and DPB1 as well as their extended haplotypes and genotypes in 100 Swedish MS patients. Results were compared to 636 population controls. The heterogeneity in HLA associations with MS was demonstrated; among 100 patients, 69 extended HLA-DR-DQ genotypes were found. Three extended HLA-DR-DQ genotypes were found to be correlated to MS; HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype together with (A) HLA-DRB4*01:01:01//DRB4*01:01:01:01-DRB1*07:01:01-DQA1*02:01//02:01:01-DQB1*02:02:01, (B) HLA-DRBX*null-DRB1*08:01:01-DQA1*04:01:01-DQB1*04:02:01, and (C) HLA-DRB3*01:01:02-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01. At the allelic level, HLA-DRB3*01:01:02 was considered protective against MS. However, when combined with HLA-DRB3*01:01:02-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01, this extended haplotype was considered a predisposing risk factor. This highlights the limitations as included with investigations of single alleles relative to those of extended haplotypes/genotypes. In conclusion, with 69 genotypes presented among 100 patients, high-resolution sequencing was conducted to underscore the wide polymorphisms present among MS patients. Additional studies in larger cohorts will be of importance to define MS among the patient group not associated with HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01.
Collapse
Affiliation(s)
- Omar Akel
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Skåne University Hospital SUS, Malmö, Sweden
| | - Lue Ping Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alexander Lind
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Skåne University Hospital SUS, Malmö, Sweden
| |
Collapse
|