1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Sorout N, Helms V. Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon. J Mol Recognit 2025; 38:e3108. [PMID: 39394908 DOI: 10.1002/jmr.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
The Sec61 translocon mediates the translocation of numerous, newly synthesized precursor proteins into the lumen of the endoplasmic reticulum or their integration into its membrane. Recently, structural biology revealed conformations of idle or substrate-engaged Sec61, and likewise its interactions with the accessory membrane proteins Sec62, Sec63, and TRAP, respectively. Several natural and synthetic small molecules have been shown to block Sec61-mediated protein translocation. Since this is a key step in protein biogenesis, broad inhibition is generally cytotoxic, which may be problematic for a putative drug target. Interestingly, several compounds exhibit client-selective modes of action, such that only translocation of certain precursor proteins was affected. Here, we discuss recent advances of structural biology, molecular modelling, and molecular screening that aim to use Sec61 as feasible drug target.
Collapse
Affiliation(s)
- Nidhi Sorout
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| |
Collapse
|
3
|
Pauwels E, Shewakramani NR, De Wijngaert B, Camps A, Provinciael B, Stroobants J, Kalies KU, Hartmann E, Maes P, Vermeire K, Das K. Structural insights into TRAP association with ribosome-Sec61 complex and translocon inhibition by a CADA derivative. SCIENCE ADVANCES 2023; 9:eadf0797. [PMID: 36867692 PMCID: PMC9984176 DOI: 10.1126/sciadv.adf0797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/31/2023] [Indexed: 05/26/2023]
Abstract
During cotranslational translocation, the signal peptide of a nascent chain binds Sec61 translocon to initiate protein transport through the endoplasmic reticulum (ER) membrane. Our cryo-electron microscopy structure of ribosome-Sec61 shows binding of an ordered heterotetrameric translocon-associated protein (TRAP) complex, in which TRAP-γ is anchored at two adjacent positions of 28S ribosomal RNA and interacts with ribosomal protein L38 and Sec61α/γ. Four transmembrane helices (TMHs) of TRAP-γ cluster with one C-terminal helix of each α, β, and δ subunits. The seven TMH bundle helps position a crescent-shaped trimeric TRAP-α/β/δ core in the ER lumen, facing the Sec61 channel. Further, our in vitro assay establishes the cyclotriazadisulfonamide derivative CK147 as a translocon inhibitor. A structure of ribosome-Sec61-CK147 reveals CK147 binding the channel and interacting with the plug helix from the lumenal side. The CK147 resistance mutations surround the inhibitor. These structures help in understanding the TRAP functions and provide a new Sec61 site for designing translocon inhibitors.
Collapse
Affiliation(s)
- Eva Pauwels
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Neesha R. Shewakramani
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Brent De Wijngaert
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Anita Camps
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Becky Provinciael
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Joren Stroobants
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Kai-Uwe Kalies
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck 23562, Germany
| | - Enno Hartmann
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck 23562, Germany
| | - Piet Maes
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Kurt Vermeire
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
4
|
Reduced DNAJC3 Expression Affects Protein Translocation across the ER Membrane and Attenuates the Down-Modulating Effect of the Translocation Inhibitor Cyclotriazadisulfonamide. Int J Mol Sci 2022; 23:ijms23020584. [PMID: 35054769 PMCID: PMC8775681 DOI: 10.3390/ijms23020584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
One of the reported substrates for the endoplasmic reticulum (ER) translocation inhibitor cyclotriazadisulfonamide (CADA) is DNAJC3, a chaperone of the unfolded protein response during ER stress. In this study, we investigated the impact of altered DNAJC3 protein levels on the inhibitory activity of CADA. By comparing WT DNAJC3 with a CADA-resistant DNAJC3 mutant, we observed the enhanced sensitivity of human CD4, PTK7 and ERLEC1 for CADA when DNAJC3 was expressed at high levels. Combined treatment of CADA with a proteasome inhibitor resulted in synergistic inhibition of protein translocation and in the rescue of a small preprotein fraction, which presumably corresponds to the CADA affected protein fraction that is stalled at the Sec61 translocon. We demonstrate that DNAJC3 enhances the protein translation of a reporter protein that is expressed downstream of the CADA-stalled substrate, suggesting that DNAJC3 promotes the clearance of the clogged translocon. We propose a model in which a reduced DNAJC3 level by CADA slows down the clearance of CADA-stalled substrates. This results in higher residual translocation into the ER lumen due to the longer dwelling time of the temporarily stalled substrates in the translocon. Thus, by directly reducing DNAJC3 protein levels, CADA attenuates its net down-modulating effect on its substrates.
Collapse
|
5
|
Inhibitors of the Sec61 Complex and Novel High Throughput Screening Strategies to Target the Protein Translocation Pathway. Int J Mol Sci 2021; 22:ijms222112007. [PMID: 34769437 PMCID: PMC8585047 DOI: 10.3390/ijms222112007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.
Collapse
|
6
|
Berger K, Pauwels E, Parkinson G, Landberg G, Le T, Demillo VG, Lumangtad LA, Jones DE, Islam MA, Olsen R, Kapri T, Intasiri A, Vermeire K, Rhost S, Bell TW. Reduction of Progranulin-Induced Breast Cancer Stem Cell Propagation by Sortilin-Targeting Cyclotriazadisulfonamide (CADA) Compounds. J Med Chem 2021; 64:12865-12876. [PMID: 34428050 PMCID: PMC10501753 DOI: 10.1021/acs.jmedchem.1c00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclotriazadisulfonamide (CADA) compounds selectively down-modulate two human proteins of potential therapeutic interest, cluster of differentiation 4 (CD4) and sortilin. Progranulin is secreted from some breast cancer cells, causing dedifferentiation of receiving cancer cells and cancer stem cell proliferation. Inhibition of progranulin binding to sortilin, its main receptor, can block progranulin-induced metastatic breast cancer using a triple-negative in vivo xenograft model. In the current study, seven CADA compounds (CADA, VGD020, VGD071, TL020, TL023, LAL014, and DJ010) were examined for reduction of cellular sortilin expression and progranulin-induced breast cancer stem cell propagation. In addition, inhibition of progranulin-induced mammosphere formation was examined and found to be most significant for TL020, TL023, VGD071, and LAL014. Full experimental details are given for the synthesis and characterization of the four new compounds (TL020, TL023, VGD071, and DJ010). Comparison of solubilities, potencies, and cytotoxicities identified VGD071 as a promising candidate for future studies using mouse breast cancer models.
Collapse
Affiliation(s)
- Karoline Berger
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Eva Pauwels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Gabrielle Parkinson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Truc Le
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Violeta G Demillo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Liezel A Lumangtad
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
- Nanosyn, 3100 Central Expressway, Santa Clara, California 95051, United States
| | - Dylan E Jones
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Md Azizul Islam
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Ryan Olsen
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Topprasad Kapri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Amarawan Intasiri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Kurt Vermeire
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sara Rhost
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| |
Collapse
|
7
|
Pauwels E, Rutz C, Provinciael B, Stroobants J, Schols D, Hartmann E, Krause E, Stephanowitz H, Schülein R, Vermeire K. A Proteomic Study on the Membrane Protein Fraction of T Cells Confirms High Substrate Selectivity for the ER Translocation Inhibitor Cyclotriazadisulfonamide. Mol Cell Proteomics 2021; 20:100144. [PMID: 34481949 PMCID: PMC8477212 DOI: 10.1016/j.mcpro.2021.100144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
Cyclotriazadisulfonamide (CADA) inhibits the cotranslational translocation of type I integral membrane protein human CD4 (huCD4) across the endoplasmic reticulum in a signal peptide (SP)–dependent way. Previously, sortilin was identified as a secondary substrate for CADA but showed reduced CADA sensitivity as compared with huCD4. Here, we performed a quantitative proteomic study on the crude membrane fraction of human T-cells to analyze how many proteins are sensitive to CADA. To screen for these proteins, we employed stable isotope labeling by amino acids in cell culture technique in combination with quantitative MS on CADA-treated human T-lymphoid SUP-T1 cells expressing high levels of huCD4. In line with our previous reports, our current proteomic analysis (data available via ProteomeXchange with identifier PXD027712) demonstrated that only a very small subset of proteins is depleted by CADA. Our data also confirmed that cellular expression of both huCD4 and sortilin are affected by CADA treatment of SUP-T1 cells. Furthermore, three additional targets for CADA are identified, namely, endoplasmic reticulum lectin 1 (ERLEC1), inactive tyrosine-protein kinase 7 (PTK7), and DnaJ homolog subfamily C member 3 (DNAJC3). Western blot and flow cytometry analysis of ERLEC1, PTK7, and DNAJC3 protein expression validated susceptibility of these substrates to CADA, although with varying degrees of sensitivity. Additional cell-free in vitro translation/translocation data demonstrated that the new substrates for CADA carry cleavable SPs that are targets for the cotranslational translocation inhibition exerted by CADA. Thus, our quantitative proteomic analysis demonstrates that ERLEC1, PTK7, and DNAJC3 are validated additional substrates of CADA; however, huCD4 remains the most sensitive integral membrane protein for the endoplasmic reticulum translocation inhibitor CADA. Furthermore, to our knowledge, CADA is the first compound that specifically interferes with only a very small subset of SPs and does not affect signal anchor sequences. About 3007 proteins quantified in SILAC/MS study on CD4+ T-cells treated with CADA. Three new targets for CADA were identified: ERLEC1, PTK7, and DNAJC3. All CADA substrates carry cleavable signal peptides for translocation into ER. huCD4 remains the most sensitive substrate for the ER translocation inhibitor CADA.
Collapse
Affiliation(s)
- Eva Pauwels
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Claudia Rutz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Becky Provinciael
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Joren Stroobants
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Enno Hartmann
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Ralf Schülein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Kurt Vermeire
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium.
| |
Collapse
|