1
|
Poirah I, Chakraborty S, Padhan PK, Mishra AK, Chakraborty D, Dixit P, Samal S, Rout N, Singh SP, Nath G, Smoot DT, Ashktorab H, Bhattacharyya A. Hypoxia and Hypoxia-Reoxygenation Potentiate Helicobacter pylori Infection and Gastric Epithelial Cell Proliferation. Cancer Med 2025; 14:e70860. [PMID: 40325849 PMCID: PMC12053057 DOI: 10.1002/cam4.70860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/20/2025] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION The gastric epithelium experiences intermittent hypoxia due to various physiological and pathological conditions. However, the impact of hypoxia and hypoxia-reoxygenation of gastric epithelial cells (GECs) on Helicobacter pylori-mediated gastric cancer (GC) has never been investigated. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) facilitate H. pylori adhesion onto GECs. We evaluated the effect of hypoxia and hypoxia-reoxygenation on CEACAM6-mediated H. pylori binding, infection, reactive oxygen species (ROS) generation, and GEC proliferation. METHODS Hypoxia-inducible factor 1 (HIF1α) and CEACAM6 levels were assessed in various GECs. ROS were measured using 2',7'-dichlorofluorescin diacetate (DCFDA). Bioinformatics analyses were performed to identify the most prominent stomach adenocarcinoma (STAD)-associated NADPH oxidase (NOX) followed by validation by overexpression/suppression studies and western blotting. GC biopsies were examined by immunofluorescence microscopy. Hypoxia-exposed, reoxygenated, or control cells were compared for ROS generation and H. pylori infection. MTT assay determined cell proliferation. RESULTS AND CONCLUSIONS Hypoxia and HIF1 mediated upregulation of CEACAM6 in GECs. CEACAM6 significantly promoted ROS generation by inducing NOX4 in hypoxic GECs. HIF1α, CEACAM6, and NOX4 upregulation was detected in gastritis and GC tissues. H. pylori infection significantly increased in hypoxia-exposed GECs as compared to normoxic GECs. Infection of hypoxia-reoxygenated GECs also resulted in significantly increased CEACAM6 and NOX4-mediated ROS generation compared to normoxic GECs. In addition, adhesion of H. pylori, cytotoxin-associated gene A (CagA) translocation, and GEC proliferation were significantly enhanced in hypoxia-reoxygenated GECs. Collectively, this study established that hypoxia and hypoxia-reoxygenation of GECs facilitate H. pylori infection and infection-mediated GEC proliferation.
Collapse
Affiliation(s)
- Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Soumyadeep Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Pratyush Kumar Padhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Ashish Kumar Mishra
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
- Dioscuri Centre for Physics and Chemistry of BacteriaInstitute of Physical Chemistry‐Polish Academy of SciencesWarsawPoland
| | - Supriya Samal
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Niranjan Rout
- Digestive Diseases CentreBeam Diagnostics BuildingOdishaIndia
| | | | - Gautam Nath
- Department of GastroenterologyAcharya Harihar Post Graduate Institute of CancerCuttackIndia
| | - Duane T. Smoot
- Department of MedicineMeharry Medical CenterNashvilleTNUSA
| | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
- Centre for Interdisciplinary Sciences (CIS), NISERAn OCC of Homi Bhabha National InstituteOdishaIndia
| |
Collapse
|
2
|
Luo Z, Wang Q, Fan X, Koh XQ, Loh XJ, Wu C, Li Z, Wu Y. ROS-Driven Nanoventilator for MRSA-Induced Acute Lung Injury Treatment via In Situ Oxygen Supply, Anti-Inflammation and Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406060. [PMID: 40106334 PMCID: PMC12079454 DOI: 10.1002/advs.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Indexed: 03/22/2025]
Abstract
Hypoxia, inflammatory response and pathogen (bacterial or viral) infection are the three main factors that lead to death in patients with acute lung injury (ALI). Among them, hypoxia activates the expression of HIF-1α, further exacerbating the production of ROS and inflammatory response. Currently, anti-inflammatory and pathogen elimination treatment strategies have effectively alleviated infectious pneumonia, but improving lung hypoxia still faces challenges. Here, a vancomycin-loaded nanoventilator (SCVN) containing superoxide dismutase (SOD) and catalase (CAT) is developed, which is prepared by encapsulating SOD, CAT and vancomycin into a nanocapsule by in situ polymerization. This nanocapsule can effectively improve the stability and loading rate of enzymes, and enhance their enzyme cascade efficiency, thereby efficiently consuming •O2 - and H2O2 to generate O2 in situ and reducing ROS level. More interestingly, in situ O2 supply can effectively relieve lung hypoxia to reduce HIF-1α expression and balance the number of M1/M2 macrophages to reduce the levels of TNF-α, IL-1β and IL-6, thereby alleviating the inflammatory response. Meanwhile, vancomycin can target and kill MRSA, fundamentally solving the cause of pneumonia. This nanoventilator with antibacterial, anti-inflammatory, ROS scavenging and in situ O2 supply functions will provide a universal clinical treatment strategy for ALI caused by pathogens.
Collapse
Affiliation(s)
- Zheng Luo
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Qi Wang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | - Xiaotong Fan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Republic of Singapore
| | - Xue Qi Koh
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Caisheng Wu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Republic of Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117576Republic of Singapore
| | - Yun‐Long Wu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| |
Collapse
|
3
|
Chen W, Wang X, Li X, Wang W, Huang Y, Qin Y, Liu P, Wu K, Li B, He Y, Zeng S, Yi L, Wang L, Zhao M, Ding H, Fan S, Li Z, Chen J. Foot-and-mouth disease virus activates glycolysis and hijacks HK2 to inhibit innate immunity and promote viral replication. Vet Res 2025; 56:71. [PMID: 40170113 PMCID: PMC11963632 DOI: 10.1186/s13567-025-01497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 04/03/2025] Open
Abstract
Foot-and-mouth disease (FMD) severely restricts the healthy development of global animal husbandry, and the unclear pathogenic mechanism of FMD virus (FMDV) leads to difficulty in preventing and purifying FMD. Glycolytic remodelling is considered one of the hallmarks of viral infection, providing energy and precursors for viral assembly and replication. In this work, the interaction and mechanism between FMDV and glycolysis were explored from the perspective of immune metabolism. We found that FMDV infection increased the extracellular acidification rate, lactic acid accumulation, and HK2 level. In addition, during FMDV infection, HK2 enhances glycolytic activity and mediates autophagic degradation of IRF3/7 to antagonize the innate immune response, thereby promoting viral replication. Our findings provide evidence that FMDV is closely correlated with host metabolism, increasing the understanding that glycolysis and HK2 facilitate virus infection, and provide new ideas for further elucidating the pathogenic mechanism of FMDV.
Collapse
Affiliation(s)
- Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yintao He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Wen's Foodstuffs Group Co., Ltd., Yunfu, Xinxing, China.
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Carra D, Maas SCE, Seoane JA, Alonso-Curbelo D. Exposomal determinants of non-genetic plasticity in tumor initiation. Trends Cancer 2025; 11:295-308. [PMID: 40023688 DOI: 10.1016/j.trecan.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
The classical view of cancer as a genetically driven disease has been challenged by recent findings of oncogenic mutations in phenotypically healthy tissues, refocusing attention on non-genetic mechanisms of tumor initiation. In this context, gene-environment interactions take the stage, with recent studies showing how they unleash and redirect cellular and tissue plasticity towards protumorigenic states in response to the exposome, the ensemble of environmental factors impinging on tissue homeostasis. We conceptualize tumor-initiating plasticity as a phenotype-transforming force acting at three levels: cell-intrinsic, focusing on mutant epithelial cells' responses to environmental variation; reprogramming of non-neoplastic cells of the host, leading to protumor micro- and macroenvironments; and microbiome ecosystem dynamics. This perspective highlights cell, tissue, and organismal plasticity mechanisms underlying tumor initiation that are shaped by the exposome, and how their functional investigation may provide new opportunities to prevent, detect, and intercept cancer-promoting plasticity.
Collapse
Affiliation(s)
- Davide Carra
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Silvana C E Maas
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jose A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Direna Alonso-Curbelo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
5
|
Philippova A, Aringazina R, Lozano R, Tikhonova Y. Correction of hypoxic effects on target organs in pneumonia with phytotherapy. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025; 22:200-208. [PMID: 39681530 DOI: 10.1515/jcim-2024-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVES This study aims to investigate the molecular mechanisms of the combination of stellasterin, quercetin, and kaempferol - components of the phytopreparation ginseng (trade name Panax) - in the treatment of tissue hypoxia occurring in patients with viral and bacterial pneumoni. METHODS An analytical single-center method of network pharmacology was utilized, involving 110 individuals divided into two subgroups: placebo and Panax phytopreparation. The therapy course lasted 2 months, after which physical (forced vital capacity, respiratory volume, oxygen saturation) and laboratory (total ATPase, Na+/K+-ATPase, glucose, leukocytes) parameters were evaluated. RESULTS The administration of kaempferol, stellasterin, and quercetin increased the activity of total ATPase compared to baseline measurements in pneumonia patients with respiratory insufficiency, as well as compared to the placebo group. Thus, phytopreparations capable of controlling or limiting inflammatory reactions in various types of pneumonia and accompanying hypoxia represent promising adjunctive therapy. CONCLUSIONS Given the increasing incidence of viral and bacterial pneumonia, there is a growing need to develop new treatment strategies for patients and improve hypoxia outcomes.
Collapse
Affiliation(s)
- Alla Philippova
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, Non-Commercial Joint-Stock Society «West Kazakhstan Marat Ospanov Medical University», Aktobe, Kazakhstan
| | - Roberto Lozano
- Department of Pharmacy, University Clinical Hospital Lozano Blesa, Zaragoza, Spain
| | - Yuliya Tikhonova
- Department of Organization and Economics of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
González D, Infante A, López L, Ceschin D, Fernández-Sanchez MJ, Cañas A, Zafra-Mejía C, Rojas A. Airborne fine particulate matter exposure induces transcriptomic alterations resembling asthmatic signatures: insights from integrated omics analysis. ENVIRONMENTAL EPIGENETICS 2025; 11:dvae026. [PMID: 39850030 PMCID: PMC11753294 DOI: 10.1093/eep/dvae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
Fine particulate matter (PM2.5), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM2.5 exposure and its association with asthma in human airway epithelial cells. Differential gene expression and binding analyses identified 349 common differentially expressed genes and genes associated with differentially enriched H3K27ac regions in both conditions. Co-expression network analysis revealed three preserved modules (Protein Folding, Cell Migration, and Hypoxia Response) significantly correlated with PM2.5 exposure and preserved in asthma networks. Pathways dysregulated in both conditions included epithelial function, hypoxia response, interleukin-17 and TNF signaling, and immune/inflammatory processes. Hub genes like TGFB2, EFNA5, and PFKFB3 were implicated in airway remodeling, cell migration, and hypoxia-induced glycolysis. These findings elucidate common altered expression patterns and processes between PM2.5 exposure and asthma, helping to understand their molecular connection. This provides guidance for future research to utilize them as potential biomarkers or therapeutic targets and generates evidence supporting the need for implementing effective air quality management strategies.
Collapse
Affiliation(s)
- Daniel González
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Alexis Infante
- School of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Liliana López
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Danilo Ceschin
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba X5016KEJ, Argentina
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5016KEJ, Argentina
| | - María José Fernández-Sanchez
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alejandra Cañas
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Carlos Zafra-Mejía
- Grupo de Investigación en Ingeniería Ambiental (GIIAUD), Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá 110321, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Department of Genetics, University of Córdoba, Córdoba 14071, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba 14004, Spain
- Reina Sofía University Hospital, Córdoba 14004, Spain
| |
Collapse
|
7
|
Procházková K, Uhlík J. Influence of Hypoxia on the Airway Epithelium. Physiol Res 2024; 73:S557. [PMID: 39589303 PMCID: PMC11627265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 11/27/2024] Open
Abstract
The necessity of oxygen for metabolic processes means that hypoxia can lead to serious cell and tissue damage. On the other hand, in some situations, hypoxia occurs under physiological conditions and serves as an important regulation factor. The airway epithelium is specific in that it gains oxygen not only from the blood supply but also directly from the luminal air. Many respiratory diseases are associated with airway obstruction or excessive mucus production thus leading to luminal hypoxia. The main goal of this review is to point out how the airway epithelium reacts to hypoxic conditions. Cells detect low oxygen levels using molecular mechanisms involving hypoxia-inducible factors (HIFs). In addition, the cells of the airway epithelium appear to overexpress HIFs in hypoxic conditions. HIFs then regulate many aspects of epithelial cell functions. The effects of hypoxia include secretory cell stimulation and hyperplasia, epithelial barrier changes, and ciliogenesis impairment. All the changes can impair mucociliary clearance, exacerbate infection, and promote inflammation leading to damage of airway epithelium and subsequent airway wall remodeling. The modulation of hypoxia regulatory mechanisms may be one of the strategies for the treatment of obstructive respiratory diseases or diseases with mucus hyperproduction. Keywords: Secretory cells, Motile cilia, Epithelial barrier, Oxygenation, Obstructive respiratory diseases.
Collapse
Affiliation(s)
- K Procházková
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
8
|
Gerard L, Lecocq M, Detry B, Bouzin C, Hoton D, Pinto Pereira J, Carlier F, Plante-Bordeneuve T, Gohy S, Lacroix V, Laterre PF, Pilette C. Airway epithelium damage in acute respiratory distress syndrome. Crit Care 2024; 28:350. [PMID: 39478566 PMCID: PMC11523598 DOI: 10.1186/s13054-024-05127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The airway epithelium (AE) fulfils multiple functions to maintain pulmonary homeostasis, among which ensuring adequate barrier function, cell differentiation and polarization, and actively transporting immunoglobulin A (IgA), the predominant mucosal immunoglobulin in the airway lumen, via the polymeric immunoglobulin receptor (pIgR). Morphological changes of the airways have been reported in ARDS, while their detailed features, impact for mucosal immunity, and causative mechanisms remain unclear. Therefore, this study aimed to assess epithelial alterations in the distal airways of patients with ARDS. METHODS We retrospectively analyzed lung tissue samples from ARDS patients and controls to investigate and quantify structural and functional changes in the small airways, using multiplex fluorescence immunostaining and computer-assisted quantification on whole tissue sections. Additionally, we measured markers of mucosal immunity, IgA and pIgR, alongside with other epithelial markers, in the serum and the broncho-alveolar lavage fluid (BALF) prospectively collected from ARDS patients and controls. RESULTS Compared to controls, airways of ARDS were characterized by increased epithelial denudation (p = 0.0003) and diffuse epithelial infiltration by neutrophils (p = 0.0005). Quantitative evaluation of multiplex fluorescence immunostaining revealed a loss of ciliated cells (p = 0.0317) a trend towards decreased goblet cells (p = 0.056), and no change regarding cell progenitors (basal and club cells), indicating altered mucociliary differentiation. Increased epithelial permeability was also shown in ARDS with a significant decrease of tight (p < 0.0001) and adherens (p = 0.025) junctional proteins. Additionally, we observed a significant decrease of the expression of pIgR, (p < 0.0001), indicating impaired mucosal IgA immunity. Serum concentrations of secretory component (SC) and S-IgA were increased in ARDS (both p < 0.0001), along other lung-derived proteins (CC16, SP-D, sRAGE). However, their BALF concentrations remained unchanged, suggesting a spillover of airway and alveolar proteins through a damaged AE. CONCLUSION The airway epithelium from patients with ARDS exhibits multifaceted alterations leading to altered mucociliary differentiation, compromised defense functions and increased permeability with pneumoproteinemia.
Collapse
Affiliation(s)
- Ludovic Gerard
- Department of Critical Care Medicine, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200, Brussels, Belgium.
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - Marylene Lecocq
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bruno Detry
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP, RRID:SCR_023378), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Delphine Hoton
- Department of Pathology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Joao Pinto Pereira
- Department of Critical Care Medicine, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - François Carlier
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, CHU-UCL Namur, Yvoir, Belgium
| | - Thomas Plante-Bordeneuve
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, CHU-UCL Namur, Yvoir, Belgium
| | - Sophie Gohy
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Valérie Lacroix
- Department of Cardiovascular and Thoracic Surgery, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre-François Laterre
- Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons, Belgium
| | - Charles Pilette
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
9
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
10
|
Huang YJ. Of Mucus and Microbes: The Sticky Issue of Mucin-Microbiome Interactions in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 210:252-253. [PMID: 38530107 PMCID: PMC11348977 DOI: 10.1164/rccm.202403-0506ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024] Open
Affiliation(s)
- Yvonne J Huang
- Department of Internal Medicine and Department of Microbiology & Immunology University of Michigan, Ann Arbor Ann Arbor, Michigan
| |
Collapse
|
11
|
Wirz K, Schulz C, Söbbeler F, Armando F, Beythien G, Gerhauser I, de Buhr N, Pilchová V, Meyer zu Natrup C, Baumgärtner W, Kästner S, von Köckritz-Blickwede M. A New Methodology for the Oxygen Measurement in Lung Tissue of an Aged Ferret Model Proves Hypoxia during COVID-19. Am J Respir Cell Mol Biol 2024; 71:146-153. [PMID: 39087829 PMCID: PMC11299086 DOI: 10.1165/rcmb.2024-0005ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/30/2024] [Indexed: 08/02/2024] Open
Abstract
Oxygen as a key element has a high impact on cellular processes. Infection with a pathogen such as SARS-CoV-2 and after inflammation may lead to hypoxic conditions in tissue that impact cellular responses. To develop optimized translational in vitro models for a better understanding of physiologic and pathophysiologic oxygen conditions, it is a prerequisite to determine oxygen concentrations generated in vivo. Our study objective was the establishment of an invasive method for oxygen measurements using a luminescence-based microsensor to determine the dissolved oxygen in the lung tissue of ferrets as animal models for SARS-CoV-2 research. By way of analogy to humans, aged ferrets are more likely to show clinical signs after SARS-CoV-2 infection than are young animals. To investigate oxygen concentrations during a respiratory viral infection, we intratracheally infected nine aged (3-yr-old) ferrets with SARS-CoV-2. The aged SARS-CoV-2-infected ferrets showed mild to moderate clinical signs associated with prolonged viral RNA shedding until 14 days postinfection. SARS-CoV-2-infected ferrets showed histopathologic lung lesion scores that significantly negatively correlated with oxygen concentrations in lung tissue. At 4 days postinfection, oxygen concentrations in lung tissue were significantly lower (mean percentage O2, 3.89 ≙ ≈ 27.78 mm Hg) than in the negative control group (mean percentage O2, 8.65 ≙ ≈ 61.4 mm Hg). In summary, we succeeded in determining the pathophysiologic oxygen conditions in the lung tissue of aged SARS-CoV-2-infected ferrets.
Collapse
Affiliation(s)
- Katrin Wirz
- Research Center for Emerging Infections and Zoonoses
- Institute of Biochemistry
| | | | | | | | | | | | - Nicole de Buhr
- Research Center for Emerging Infections and Zoonoses
- Institute of Biochemistry
| | - Veronika Pilchová
- Research Center for Emerging Infections and Zoonoses
- Institute of Biochemistry
| | - Christian Meyer zu Natrup
- Research Center for Emerging Infections and Zoonoses
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | | |
Collapse
|
12
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Absatirova V, Shandaulov A, Khamchiyev K, Shukurov F, Khalimova F. Changes in the pulmonary circulation due to gravitational loads in high altitude conditions. Clin Hemorheol Microcirc 2024; 86:419-432. [PMID: 38108346 DOI: 10.3233/ch-231910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND The impact of gravity on the existence of all living things has long been of interest to scientists. The force of the Earth's gravity combined with hypoxia significantly affects blood circulation and blood accumulation in various parts of the human and animal body. To date, the relationship between body position and blood circulation in pulmonary circulation under hypobaric hypoxia has not been sufficiently studied. OBJECTIVES Therefore, the research aims to determine the possibility of changing the body position in space on the reactions in the pulmonary circulation in the plains and highlands. METHODS For this purpose, research was conducted on male Wistar rats, 44 of whom spent 150 days at an altitude of 3200 m above sea level, and 25 representatives of the control group - at an altitude of 164 m. RESULTS The study revealed that gravitational redistribution of blood in mountainous conditions is less pronounced compared to the control group. This is explained by the remodeling of the vascular wall and an increase in its stiffness. It was found that a change in pulmonary artery pressure at the time of a change in body position was recorded both on the plains and in the highlands. On the plains, when the body position of rats was changed to passive orthostatic, a decrease in systolic and diastolic pulmonary artery pressure was noted, and when the body position was changed to passive anti-orthostatic, an increase in pulmonary artery pressure was observed. The increase in pulmonary artery pressure was a compensatory mechanism due to the increased stiffness of the pulmonary vasculature. CONCLUSIONS The practical significance of this research is to expand the understanding of the pathogenesis of pulmonary hypertension in high-altitude hypoxia.
Collapse
Affiliation(s)
- Venera Absatirova
- Department of Normal Physiology, Astana Medical University, Astana, Kazakhstan
| | - Assylbek Shandaulov
- Department of Normal Physiology, Astana Medical University, Astana, Kazakhstan
| | - Kureysh Khamchiyev
- Department of Normal Physiology, Astana Medical University, Astana, Kazakhstan
| | - Firuz Shukurov
- Department of Normal Physiology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Fariza Khalimova
- Department of Normal Physiology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| |
Collapse
|
14
|
Moore-Machacek A, Gloe A, O'Leary N, Reen FJ. Efflux, Signaling and Warfare in a Polymicrobial World. Antibiotics (Basel) 2023; 12:antibiotics12040731. [PMID: 37107093 PMCID: PMC10135244 DOI: 10.3390/antibiotics12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery void of antimicrobial development has occurred at a time when the world has seen a rapid emergence and spread of antimicrobial resistance, the 'perfect storm' as it has often been described. While the discovery and development of new antibiotics has continued in the research sphere, the pipeline to clinic has largely been fed by derivatives of existing classes of antibiotics, each prone to pre-existing resistance mechanisms. A novel approach to infection management has come from the ecological perspective whereby microbial networks and evolved communities already possess small molecular capabilities for pathogen control. The spatiotemporal nature of microbial interactions is such that mutualism and parasitism are often two ends of the same stick. Small molecule efflux inhibitors can directly target antibiotic efflux, a primary resistance mechanism adopted by many species of bacteria and fungi. However, a much broader anti-infective capability resides within the action of these inhibitors, borne from the role of efflux in key physiological and virulence processes, including biofilm formation, toxin efflux, and stress management. Understanding how these behaviors manifest within complex polymicrobial communities is key to unlocking the full potential of the advanced repertoires of efflux inhibitors.
Collapse
Affiliation(s)
| | - Antje Gloe
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53113 Bonn, Germany
| | - Niall O'Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
15
|
Vascular Endothelial Growth Factor A Contributes to Increased Mammalian Respiratory Epithelial Permeability Induced by Pasteurella multocida Infection. Microbiol Spectr 2023:e0455422. [PMID: 36916939 PMCID: PMC10101004 DOI: 10.1128/spectrum.04554-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Pasteurella multocida infection can cause significant zoonotic respiratory problems in both humans and animals, but little is known about the mechanisms used by P. multocida to invade and cross the mammalian respiratory barrier. In this study, we investigated the influence of P. multocida infection on the dysfunction of the respiratory epithelial barrier. In vivo tests in mouse infection models demonstrated that P. multocida infection significantly increased epithelial permeability and increased the expression of vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) in murine tracheae and lungs. In murine lung epithelial cell (MLE-12) models, P. multocida infection decreased the expression of tight junctions (ZO-1) and adherens junctions (β-catenin and E-cadherin) proteins but induced the activation of hypoxia-inducible factor 1α (HIF-1α) and VEGFA signaling. When the expression of HIF-1α is suppressed, the induction of VEGFA and ZO-1 expression by P. multocida infection is decreased. We also found that intervention of HIF-1α and VEGFA signaling affected infection outcomes caused by respiratory bacteria in mouse models. Most importantly, we demonstrate that P. multocida infection increases the permeability of human respiratory epithelial cells and that this process is associated with the activation of HIF-1α and VEGFA signaling and likely contributes to the pathogenesis of P. multocida infection in humans. IMPORTANCE The mammalian respiratory epithelium forms the first line of defense against infections with P. multocida, an important zoonotic respiratory pathogen. In this study, we found that P. multocida infection increased respiratory epithelial permeability and promoted the induction of the HIF-1α-VEGFA axis in both mouse and murine cell models. Similar findings were also demonstrated in human respiratory epithelial cells. The results from this study provide important knowledge about the pathogenesis of P. multocida causing infections in both animals and humans.
Collapse
|
16
|
Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies. ACS NANO 2022; 16:19840-19872. [PMID: 36441973 DOI: 10.1021/acsnano.2c08262] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections remain the leading cause of death worldwide today. The emergence of antibiotic resistance has urged the development of alternative antibacterial technologies to complement or replace traditional antibiotic treatments. In this regard, metal nanomaterials have attracted great attention for their controllable antibacterial functions that are less prone to resistance. This review discusses a particular family of stimuli-activable metal-bearing nanomaterials (denoted as SAMNs) and the associated on-demand antibacterial strategies. The various SAMN-enabled antibacterial strategies stem from basic light and magnet activation, with the addition of bacterial microenvironment responsiveness and/or bacteria-targeting selectivity and therefore offer higher spatiotemporal controllability. The discussion focuses on nanomaterial design principles, antibacterial mechanisms, and antibacterial performance, as well as emerging applications that desire on-demand and selective activation (i.e., medical antibacterial treatments, surface anti-biofilm, water disinfection, and wearable antibacterial materials). The review concludes with the authors' perspectives on the challenges and future directions for developing industrial translatable next-generation antibacterial strategies.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, 117543 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| |
Collapse
|
17
|
Huang F, Yu J, Lai T, Luo L, Zhang W. The Combination of Bioinformatics Analysis and Untargeted Metabolomics Reveals Potential Biomarkers and Key Metabolic Pathways in Asthma. Metabolites 2022; 13:25. [PMID: 36676950 PMCID: PMC9860906 DOI: 10.3390/metabo13010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Asthma is a complex chronic airway inflammatory disease that seriously impacts patients' quality of life. As a novel approach to exploring the pathogenesis of diseases, metabolomics provides the potential to identify biomarkers of asthma host susceptibility and elucidate biological pathways. The aim of this study was to screen potential biomarkers and biological pathways so as to provide possible pharmacological therapeutic targets for asthma. In the present study, we merged the differentially expressed genes (DEGs) of asthma in the GEO database with the metabolic genes obtained by Genecard for bioinformatics analysis and successfully screened out the metabolism-related hub genes (HIF1A, OCRL, NNMT, and PER1). Then, untargeted metabolic techniques were utilized to reveal HDM-induced metabolite alterations in 16HBE cells. A total of 45 significant differential metabolites and 5 differential metabolic pathways between the control group and HDM group were identified based on the OPLS-DA model. Finally, three key metabolic pathways, including glycerophospholipid metabolism, galactose metabolism, and alanine, aspartate, and glutamate metabolism, were screened through the integrated analysis of bioinformatics data and untargeted metabolomics data. Taken together, these findings provide valuable insights into the pathophysiology and targeted therapy of asthma and lay a foundation for further research.
Collapse
Affiliation(s)
- Fangfang Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Graduate School, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinjin Yu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Tianwen Lai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhen Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Thornton CS, Acosta N, Surette MG, Parkins MD. Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. J Pediatric Infect Dis Soc 2022; 11:S13-S22. [PMID: 36069903 PMCID: PMC9451016 DOI: 10.1093/jpids/piac036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 01/02/2023]
Abstract
Chronic lower respiratory tract infections are a leading contributor to morbidity and mortality in persons with cystic fibrosis (pwCF). Traditional respiratory tract surveillance culturing has focused on a limited range of classic pathogens; however, comprehensive culture and culture-independent molecular approaches have demonstrated complex communities highly unique to each individual. Microbial community structure evolves through the lifetime of pwCF and is associated with baseline disease state and rates of disease progression including occurrence of pulmonary exacerbations. While molecular analysis of the airway microbiome has provided insight into these dynamics, challenges remain including discerning not only "who is there" but "what they are doing" in relation to disease progression. Moreover, the microbiome can be leveraged as a multi-modal biomarker for both disease activity and prognostication. In this article, we review our evolving understanding of the role these communities play in pwCF and identify challenges in translating microbiome data to clinical practice.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Parkins
- Corresponding Author: Michael D. Parkins, MD, MSc, FRCPC, Associate Professor, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. E-mail:
| |
Collapse
|
20
|
Wing PAC, Prange-Barczynska M, Cross A, Crotta S, Orbegozo Rubio C, Cheng X, Harris JM, Zhuang X, Johnson RL, Ryan KA, Hall Y, Carroll MW, Issa F, Balfe P, Wack A, Bishop T, Salguero FJ, McKeating JA. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog 2022; 18:e1010807. [PMID: 36067210 PMCID: PMC9481176 DOI: 10.1371/journal.ppat.1010807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Amy Cross
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Xiaotong Cheng
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Johnson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Kathryn A. Ryan
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Miles W. Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Francisco J. Salguero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Schumann AR, Sue AD, Roach DR. Hypoxia Increases the Tempo of Phage Resistance and Mutational Bottlenecking of Pseudomonas aeruginosa. Front Microbiol 2022; 13:905343. [PMID: 35979493 PMCID: PMC9376454 DOI: 10.3389/fmicb.2022.905343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses that infect bacteria (i.e., phages) are abundant and widespread in the human body, and new anti-infective approaches such as phage therapy are essential for the future of effective medicine. Our understanding of microenvironmental factors such as tissue oxygen availability at the site of phage-bacteria interaction remains limited, and it is unknown whether evolved resistance is sculpted differentially under normoxia vs. hypoxia. We, therefore, analyzed the phage-bacteria interaction landscape via adsorption, one-step, time-kill dynamics, and genetic evolution under both normoxia and hypoxia. This revealed that adsorption of phages to Pseudomonas aeruginosa decreased under 14% environmental oxygen (i.e., hypoxia), but phage time-kill and one-step growth kinetics were not further influenced. Tracking the adaptation of P. aeruginosa to phages uncovered a higher frequency of phage resistance and constrained types of spontaneous mutation under hypoxia. Given the interest in developing phage therapies, developing our understanding of the phage-pathogen interaction under microenvironmental conditions resembling those in the body offers insight into possible strategies to overcome multidrug-resistant (MDR) bacteria.
Collapse
Affiliation(s)
- Ashley R. Schumann
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Andrew D. Sue
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Dwayne R. Roach
- Department of Biology, San Diego State University, San Diego, CA, United States
- Viral Information Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
22
|
Zhou W, Yu T, Hua Y, Hou Y, Ding Y, Nie H. Effects of Hypoxia on Respiratory Diseases: Perspective View of Epithelial Ion Transport. Am J Physiol Lung Cell Mol Physiol 2022; 323:L240-L250. [PMID: 35819839 DOI: 10.1152/ajplung.00065.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The balance of gas exchange and lung ventilation is essential for the maintenance of body homeostasis. There are many ion channels and transporters in respiratory epithelial cells, including epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator, and some transporters. These ion channels/transporters maintain the capacity of liquid layer on the surface of respiratory epithelial cells, and provide an immune barrier for the respiratory system to clear off foreign pathogens. However, in some harmful external environment and/or pathological conditions, the respiratory epithelium is prone to hypoxia, which would destroy the ion transport function of the epithelium and unbalance the homeostasis of internal environment, triggering a series of pathological reactions. Many respiratory diseases associated with hypoxia manifest an increased expression of hypoxia-inducible factor-1, which mediates the integrity of the epithelial barrier and affects epithelial ion transport function. It is important to study the relationship between hypoxia and ion transport function, whereas the mechanism of hypoxia-induced ion transport dysfunction in respiratory diseases is not clear. This review focuses on the relationship of hypoxia and respiratory diseases, as well as dysfunction of ion transport and tight junctions in respiratory epithelial cells under hypoxia.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Ramirez-Moral I, Ferreira BL, Butler JM, van Weeghel M, Otto NA, de Vos AF, Yu X, de Jong MD, Houtkooper RH, van der Poll T. HIF-1α Stabilization in Flagellin-Stimulated Human Bronchial Cells Impairs Barrier Function. Cells 2022; 11:cells11030391. [PMID: 35159204 PMCID: PMC8834373 DOI: 10.3390/cells11030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The respiratory epithelium provides a first line of defense against pathogens. Hypoxia-inducible factor (HIF)1α is a transcription factor which is stabilized in hypoxic conditions through the inhibition of prolyl-hydroxylase (PHD)2, the enzyme that marks HIF1α for degradation. Here, we studied the impact of HIF1α stabilization on the response of primary human bronchial epithelial (HBE) cells to the bacterial component, flagellin. The treatment of flagellin-stimulated HBE cells with the PHD2 inhibitor IOX2 resulted in strongly increased HIF1α expression. IOX2 enhanced the flagellin-induced expression of the genes encoding the enzymes involved in glycolysis, which was associated with the intracellular accumulation of pyruvate. An untargeted pathway analysis of RNA sequencing data demonstrated the strong inhibitory effects of IOX2 toward key innate immune pathways related to cytokine and mitogen-activated kinase signaling cascades in flagellin-stimulated HBE cells. Likewise, the cell-cell junction organization pathway was amongst the top pathways downregulated by IOX2 in flagellin-stimulated HBE cells, which included the genes encoding claudins and cadherins. This IOX2 effect was corroborated by an impaired barrier function, as measured by dextran permeability. These results provide a first insight into the effects associated with HIF1α stabilization in the respiratory epithelium, suggesting that HIF1α impacts properties that are key to maintaining homeostasis upon stimulation with a relevant bacterial agonist.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
- Correspondence: ; Tel.: +31-631080615
| | - Bianca L. Ferreira
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04023-062, Brazil
| | - Joe M. Butler
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (R.H.H.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Natasja A. Otto
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
| | - Alex F. de Vos
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
| | - Xiao Yu
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.Y.); (M.D.d.J.)
| | - Menno D. de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.Y.); (M.D.d.J.)
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (R.H.H.)
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
24
|
Salvi S, Ghorpade D, Dhoori S, Dhar R, Dumra H, Chhajed P, Bhattacharya P, Rajan S, Talwar D, Christopher D, Mohan M, Udwadia Z. Role of antifibrotic drugs in the management of post-COVID-19 interstitial lung disease: A review of literature and report from an expert working group. Lung India 2022; 39:177-186. [PMID: 35259802 PMCID: PMC9053913 DOI: 10.4103/lungindia.lungindia_659_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
25
|
Luu R, Valdebenito S, Scemes E, Cibelli A, Spray DC, Rovegno M, Tichauer J, Cottignies-Calamarte A, Rosenberg A, Capron C, Belouzard S, Dubuisson J, Annane D, de la Grandmaison GL, Cramer-Bordé E, Bomsel M, Eugenin E. Pannexin-1 channel opening is critical for COVID-19 pathogenesis. iScience 2021; 24:103478. [PMID: 34841222 PMCID: PMC8603863 DOI: 10.1016/j.isci.2021.103478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1β release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1β levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.
Collapse
Affiliation(s)
- Ross Luu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Eliana Scemes
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Antonio Cibelli
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Cottignies-Calamarte
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
| | - Arielle Rosenberg
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France.,Virologie Moléculaire et Cellulaire des Coronavirus, Centre d'infection et d'immunité de Lille, Institut Pasteur de Lille, Université de Lille, CNRS, Inserm, CHRU, 59000 Lille, France
| | - Calude Capron
- Service des Maladies Infectieuses, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | | | - Jean Dubuisson
- Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), Paris, France
| | - Djillali Annane
- Simone Veil School of Medicine, Université of Versailles, Versailles, France.,University Paris Saclay, Garches, France
| | - Geoffroy Lorin de la Grandmaison
- Department of Forensic Medicine and Pathology, Versailles Saint-Quentin Université, AP-HP, Raymond Poincaré Hospital, Garches, France
| | | | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France.,INSERM U1016, Paris, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| |
Collapse
|
26
|
Watson A, Wilkinson TMA, Freeman A. Evidence Around the Impact of Pulmonary Rehabilitation and Exercise on Redox Status in COPD: A Systematic Review. Front Sports Act Living 2021; 3:782590. [PMID: 34901852 PMCID: PMC8664411 DOI: 10.3389/fspor.2021.782590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction: Oxidative stress is increasingly recognized as a significant factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). Pulmonary rehabilitation, a major component of which is prescribed exercise, is essential in COPD care. Regular exercise has been proposed to increase antioxidant defenses and overall enhance the ability of the body to counteract oxidative stress. However, the mechanisms through which it improves COPD outcomes remain unclear. Objectives: We aimed to appraise the current evidence around the impact of pulmonary rehabilitation on redox status, compared with other exercise interventions, to gain an understanding of optimal exercise interventions to modify this pathophysiological mechanism. Methods: We performed a systematic review through searching CENTRAL, MEDLINE, PubMed, Scopus, and Web of Science. Results were independently reviewed and relevant studies were selected by two independent assessors. Studies were assessed by two independent people using the modified RoB 2 tool and discrepancies were resolved through discussion. Results: We identified 1,710 records and 1,117 records after duplicate removal. Six studies were included in the final analysis. The evidence available was low quality and four studies had high risk of bias and two studies had unclear risk of bias. Studies were small (15–56 participants); only two included details of randomization and patient cohorts were of varying ages and poorly described. Differences in smoking status and previous exercise levels, which are known to impact redox status, were not well documented. Studies were not standardized and used different exercise doses and measured different outcomes. One study reported lower malondialdehyde levels, a marker of lipid peroxidation, after pulmonary rehabilitation, compared with control. However, one study saw no difference following whole-body vibration training and another study showed higher malondialdehyde levels following supervised modified arm swing exercise compared with control. Conclusion: Understanding the impact of exercise on oxidative stress in COPD could lead to tailored exercise programs and modification of pathological mechanisms. However, we identify a lack of high-quality evidence to determine this. Larger, standardized, and high quality randomized controlled trials (RCTs) are essential, which use carefully clinically characterized and controlled cohorts to determine the relative impact of different exercise interventions on redox status to guide COPD management. We propose an idealized RCT design, which could be used to try and meet this need.
Collapse
Affiliation(s)
- Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Anna Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
27
|
Freeman A, Cellura D, Minnion M, Fernandez BO, Spalluto CM, Levett D, Bates A, Wallis T, Watson A, Jack S, Staples KJ, Grocott MPW, Feelisch M, Wilkinson TMA. Exercise Training Induces a Shift in Extracellular Redox Status with Alterations in the Pulmonary and Systemic Redox Landscape in Asthma. Antioxidants (Basel) 2021; 10:antiox10121926. [PMID: 34943027 PMCID: PMC8750917 DOI: 10.3390/antiox10121926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Redox dysregulation and oxidative stress have been implicated in asthma pathogenesis. Exercise interventions improve symptoms and reduce inflammation in asthma patients, but the underlying mechanisms remain unclear. We hypothesized that a personalised exercise intervention would improve asthma control by reducing lung inflammation through modulation of local and systemic reactive species interactions, thereby increasing antioxidant capacity. We combined deep redox metabolomic profiling with clinical assessment in an exploratory cohort of six female patients with symptomatic asthma and studied their responses to a metabolically targeted exercise intervention over 12 weeks. Plasma antioxidant capacity and circulating nitrite levels increased following the intervention (p = 0.028) and lowered the ratio of reduced to oxidised glutathione (p = 0.029); this was accompanied by improvements in physical fitness (p = 0.046), symptoms scores (p = 0.020), quality of life (p = 0.046), lung function (p = 0.028), airway hyperreactivity (p = 0.043), and eosinophilic inflammation (p = 0.007). Increased physical fitness correlated with improved plasma antioxidant capacity (p = 0.019), peak oxygen uptake and nitrite changes (p = 0.005), the latter also associated with reductions in peripheral blood eosinophil counts (p = 0.038). Thus, increases in “redox resilience” may underpin the clinical benefits of exercise in asthma. An improved understanding of exercise-induced alterations in redox regulation offers opportunities for greater treatment personalisation and identification of new treatment targets.
Collapse
Affiliation(s)
- Anna Freeman
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
- Correspondence:
| | - Doriana Cellura
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Magdalena Minnion
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Bernadette O. Fernandez
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Cosma Mirella Spalluto
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Denny Levett
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Andrew Bates
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Timothy Wallis
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Alastair Watson
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Sandy Jack
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Karl J. Staples
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
28
|
Wagener BM, Hu R, Wu S, Pittet JF, Ding Q, Che P. The Role of Pseudomonas aeruginosa Virulence Factors in Cytoskeletal Dysregulation and Lung Barrier Dysfunction. Toxins (Basel) 2021; 13:776. [PMID: 34822560 PMCID: PMC8625199 DOI: 10.3390/toxins13110776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas (P.) aeruginosa is an opportunistic pathogen that causes serious infections and hospital-acquired pneumonia in immunocompromised patients. P. aeruginosa accounts for up to 20% of all cases of hospital-acquired pneumonia, with an attributable mortality rate of ~30-40%. The poor clinical outcome of P. aeruginosa-induced pneumonia is ascribed to its ability to disrupt lung barrier integrity, leading to the development of lung edema and bacteremia. Airway epithelial and endothelial cells are important architecture blocks that protect the lung from invading pathogens. P. aeruginosa produces a number of virulence factors that can modulate barrier function, directly or indirectly, through exploiting cytoskeleton networks and intercellular junctional complexes in eukaryotic cells. This review summarizes the current knowledge on P. aeruginosa virulence factors, their effects on the regulation of the cytoskeletal network and associated components, and molecular mechanisms regulating barrier function in airway epithelial and endothelial cells. A better understanding of these processes will help to lay the foundation for new therapeutic approaches against P. aeruginosa-induced pneumonia.
Collapse
Affiliation(s)
- Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruihan Hu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Internal Medicine, Guiqian International General Hospital, Guiyang 550024, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Dietert RR. Microbiome First Medicine in Health and Safety. Biomedicines 2021; 9:biomedicines9091099. [PMID: 34572284 PMCID: PMC8468398 DOI: 10.3390/biomedicines9091099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Microbiome First Medicine is a suggested 21st century healthcare paradigm that prioritizes the entire human, the human superorganism, beginning with the microbiome. To date, much of medicine has protected and treated patients as if they were a single species. This has resulted in unintended damage to the microbiome and an epidemic of chronic disorders [e.g., noncommunicable diseases and conditions (NCDs)]. Along with NCDs came loss of colonization resistance, increased susceptibility to infectious diseases, and increasing multimorbidity and polypharmacy over the life course. To move toward sustainable healthcare, the human microbiome needs to be front and center. This paper presents microbiome-human physiology from the view of systems biology regulation. It also details the ongoing NCD epidemic including the role of existing drugs and other factors that damage the human microbiome. Examples are provided for two entryway NCDs, asthma and obesity, regarding their extensive network of comorbid NCDs. Finally, the challenges of ensuring safety for the microbiome are detailed. Under Microbiome-First Medicine and considering the importance of keystone bacteria and critical windows of development, changes in even a few microbiota-prioritized medical decisions could make a significant difference in health across the life course.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Cho HJ, Ha JG, Lee SN, Kim CH, Wang DY, Yoon JH. Differences and similarities between the upper and lower airway: focusing on innate immunity. Rhinology 2021; 59:441-450. [PMID: 34339483 DOI: 10.4193/rhin21.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nose is the first respiratory barrier to external pathogens, allergens, pollutants, or cigarette smoke, and vigorous immune responses are triggered when external pathogens come in contact with the nasal epithelium. The mucosal epithelial cells of the nose are essential to the innate immune response against external pathogens and transmit signals that modulate the adaptive immune response. The upper and lower airways share many physiological and immunological features, but there are also numerous differences. It is crucial to understand these differences and their contribution to pathophysiology in order to optimize treatments for inflammatory diseases of the respiratory tract. This review summarizes important differences in the embryological development, histological features, microbiota, immune responses, and cellular subtypes of mucosal epithelial cells of the nose and lungs.
Collapse
Affiliation(s)
- H-J Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J G Ha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - S N Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea 2 Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea
| | - C-H Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - D-Y Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - J-H Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Cheng WH, Chen CL, Chen JY, Lin CH, Chen BC. Hypoxia-induced preadipocyte factor 1 expression in human lung fibroblasts through ERK/PEA3/c-Jun pathway. Mol Med 2021; 27:69. [PMID: 34229599 PMCID: PMC8259210 DOI: 10.1186/s10020-021-00336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have reported that hypoxia plays a pathological role in severe asthma and tissue fibrosis. Our previous study showed that hypoxia induces A disintegrin and metalloproteinase 17 (ADAM17) expression in human lung fibroblasts. Moreover, preadipocyte factor 1 (Pref-1) is cleaved by ADAM17, which participates in adipocyte differentiation. Furthermore, Pref1 overexpression is involved in tissue fibrosis including liver and heart. Extracellular signal-regulated kinase (ERK) could active downstram gene expression through polyoma enhancer activator 3 (PEA3) phosphorylation. Studies have demonstrated that PEA3 and activator protein 1 (AP-1) play crucial roles in lung fibrosis, and the Pref-1 promoter region contains PEA3 and AP-1 binding sites as predicted. However, the roles of ERK, PEA3, and AP-1 in hypoxia-stimulated Pref-1 expression in human lung fibroblasts remain unknown. Methods The protein expression in ovalbumin (OVA)-induced asthmatic mice was performed by immunohistochemistry and immunofluorescence. The protein expression or the mRNA level in human lung fibroblasts (WI-38) was detected by western blot or quantitative PCR. Small interfering (si) RNA was used to knockdown gene expression. The collaboration with PEA3 and c-Jun were determined by coimmunoprecipitation. Translocation of PEA3 from the cytosol to the nucleus was observed by immunocytochemistry. The binding ability of PEA3 and AP-1 to Pref-1 promoter was assessed by chromatin immunoprecipitation. Results Pref-1 and hypoxia-inducible factor 1α (HIF-1α) were expressed in the lung sections of OVA-treated mice. Colocalization of PEA3 and Fibronectin was detected in lung sections from OVA-treated mice. Futhermore, Hypoxia induced Pref1 protein upregulation and mRNA expression in human lung fibroblasts (WI38 cells). In 60 confluent WI-38 cells, hypoxia up-regulated HIF-1α and Pref-1 protein expression. Moreover, PEA3 small interfering (si) RNA decreased the expression of hypoxia-induced Pref1 in WI38 cells. Hypoxia induced PEA3 phosphorylation, translocation of PEA3 from the cytosol to the nucleus, PEA3 recruitment and AP-1 binding to the Pref1 promoter region, and PEA3-luciferase activity. Additionally, hypoxia induced c-Jun-PEA3 complex formation. U0126 (an ERK inhibitor), curcumin (an AP1 inhibitor) or c-Jun siRNA downregulated hypoxia-induced Pref-1 expression. Conclusions These results implied that ERK, PEA3, and AP1 participate in hypoxiainduced Pref1 expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Wun-Hao Cheng
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Respiratory Therapy, Wan Fang Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chia-Ling Chen
- Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yun Chen
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chien-Huang Lin
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| | - Bing-Chang Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Respiratory Therapy, Wan Fang Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|