1
|
Dan L, Kang-Zheng L. Optimizing viral transduction in immune cell therapy manufacturing: key process design considerations. J Transl Med 2025; 23:501. [PMID: 40316943 PMCID: PMC12046913 DOI: 10.1186/s12967-025-06524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
Immune cell therapies have revolutionized the treatment of cancers, autoimmune disorders, and infectious diseases. A critical step in their manufacturing is viral transduction, which enables the delivery of therapeutic genes into immune cells. However, the complexity of this process presents significant challenges for optimization and scalability. This review provides a comprehensive analysis of viral transduction process in immune cell therapy manufacturing, highlighting key design considerations to support the development of safe, effective, and scalable production methods. Additionally, it examines current technological challenges in immune cell transduction and explores future innovations poised to advance the field.
Collapse
Affiliation(s)
- Liu Dan
- Bioprocessing Technology Institute BTI, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore.
| | - Lee Kang-Zheng
- Bioprocessing Technology Institute BTI, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| |
Collapse
|
2
|
Arata R, Tanimine N, Seidakhmetov A, Ide K, Tanaka Y, Ohdan H. Discrimination of Anti-Donor Response in Allogeneic Transplantation Using an Alloreactive T-Cell Detection Assay. Transpl Int 2025; 38:13879. [PMID: 39936124 PMCID: PMC11810569 DOI: 10.3389/ti.2025.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
Understanding donor-reactive T-cell behavior post-transplantation is challenging owing to the rarity and diversity of these cells. Here, we aimed to evaluate the relevance of an assay for rapidly detecting alloreactive T cells in a mouse transplantation model. After 18 h of one-way mixed lymphocyte reaction (MLR) culture with pre-activated donor-derived stimulators, CD4+ and CD8+ donor-reactive T cells were identified by CD154 and CD137 expression, respectively. Using full MHC mismatched mouse skin transplant models, we observed an increased donor-reactive T-cell proportion by direct presentation with elevated interferon gamma and granzyme B production 7 days post-transplantation, before graft rejection. Immunosuppression with CTLA-4 IgG and anti-CD154 antibody varied depending on donor-recipient strain combinations. On day 7, donor-reactive CD8+ T-cell proportions were lower in the tolerance model (BALB/c to C3H/HeJ) than in the rejection model (BALB/c to C57BL/6); conventional proliferation readout after 4 days of MLR could not distinguish these responses. Overall, although the conventional readout for evaluating T-cell proliferation following an MLR quantifies the precursor frequency of alloreactive T cells, the assay reported herein assesses T-cell activation markers after a short-term MLR to characterize immediate immune status. These findings offer a promising tool to elucidate immune responses post-transplantation.
Collapse
Affiliation(s)
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
3
|
Ho QY, Hester J, Issa F. Regulatory cell therapy for kidney transplantation and autoimmune kidney diseases. Pediatr Nephrol 2025; 40:39-52. [PMID: 39278988 PMCID: PMC11584488 DOI: 10.1007/s00467-024-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024]
Abstract
Regulatory cell therapies, including regulatory T cells and mesenchymal stromal cells, have shown promise in early clinical trials for reducing immunosuppression burden in transplantation. While regulatory cell therapies may also offer potential for treating autoimmune kidney diseases, data remains sparse, limited mainly to preclinical studies. This review synthesises current literature on the application of regulatory cell therapies in these fields, highlighting the safety and efficacy shown in existing clinical trials. We discuss the need for further clinical validation, optimisation of clinical and immune monitoring protocols, and the challenges of manufacturing and quality control under Good Manufacturing Practice conditions, particularly for investigator-led trials. Additionally, we explore the potential for expanding clinical indications and the unique challenges posed in paediatric applications. Future directions include scaling up production, refining protocols to ensure consistent quality across manufacturing sites, and extending applications to other immune-mediated diseases.
Collapse
Affiliation(s)
- Quan Yao Ho
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
4
|
Feng F, Shen J, Qi Q, Zhang Y, Ni S. Empowering brain tumor management: chimeric antigen receptor macrophage therapy. Theranostics 2024; 14:5725-5742. [PMID: 39310093 PMCID: PMC11413779 DOI: 10.7150/thno.98290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
Collapse
Affiliation(s)
| | | | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
5
|
Cross AR, Gartner L, Hester J, Issa F. Opportunities for High-plex Spatial Transcriptomics in Solid Organ Transplantation. Transplantation 2023; 107:2464-2472. [PMID: 36944604 DOI: 10.1097/tp.0000000000004587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The last 5 y have seen the development and widespread adoption of high-plex spatial transcriptomic technology. This technique detects and quantifies mRNA transcripts in situ, meaning that transcriptomic signatures can be sampled from specific cells, structures, lesions, or anatomical regions while conserving the physical relationships that exist within complex tissues. These methods now frequently implement next-generation sequencing, enabling the simultaneous measurement of many targets, up to and including the whole mRNA transcriptome. To date, spatial transcriptomics has been foremost used in the fields of neuroscience and oncology, but there is potential for its use in transplantation sciences. Transplantation has a clear dependence on biopsies for diagnosis, monitoring, and research. Transplant patients represent a unique cohort with multiple organs of interest, clinical courses, demographics, and immunosuppressive regimens. Obtaining high complexity data on the disease processes underlying rejection, tolerance, infection, malignancy, and injury could identify new opportunities for therapeutic intervention and biomarker identification. In this review, we discuss currently available spatial transcriptomic technologies and how they can be applied to transplantation.
Collapse
Affiliation(s)
- Amy R Cross
- Translational Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
6
|
Monitoring of the Forgotten Immune System during Critical Illness-A Narrative Review. Medicina (B Aires) 2022; 59:medicina59010061. [PMID: 36676685 PMCID: PMC9866378 DOI: 10.3390/medicina59010061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Immune organ failure is frequent in critical illness independent of its cause and has been acknowledged for a long time. Most patients admitted to the ICU, whether featuring infection, trauma, or other tissue injury, have high levels of alarmins expression in tissues or systemically which then activate innate and adaptive responses. Although necessary, this response is frequently maladaptive and leads to organ dysfunction. In addition, the counter-response aiming to restore homeostasis and repair injury can also be detrimental and contribute to persistent chronic illness. Despite intensive research on this topic in the last 40 years, the immune system is not routinely monitored in critical care units. In this narrative review we will first discuss the inflammatory response after acute illness and the players of maladaptive response, focusing on neutrophils, monocytes, and T cells. We will then go through commonly used biomarkers, like C-reactive protein, procalcitonin and pancreatic stone protein (PSP) and what they monitor. Next, we will discuss the strengths and limitations of flow cytometry and related techniques as an essential tool for more in-depth immune monitoring and end with a presentation of the most promising cell associated markers, namely HLA-DR expression on monocytes, neutrophil expression of CD64 and PD-1 expression on T cells. In sum, immune monitoring critically ill patients is a forgotten and missing piece in the monitoring capacity of intensive care units. New technology, including bed-side equipment and in deep cell phenotyping using emerging multiplexing techniques will likely allow the definition of endotypes and a more personalized care in the future.
Collapse
|
7
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
8
|
Ahmadi P, Yan M, Bauche A, Smeets R, Müller CE, Koch-Nolte F, Haag F, Fliegert R, Kluwe L, Wiesch JSZ, Hartjen P. Human dental pulp cells modulate CD8+ T cell proliferation and efficiently degrade extracellular ATP to adenosine in vitro. Cell Immunol 2022; 380:104589. [DOI: 10.1016/j.cellimm.2022.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
|
9
|
Preclinical Assessment of Mesenchymal-Stem-Cell-Based Therapies in Spinocerebellar Ataxia Type 3. Biomedicines 2021; 9:biomedicines9121754. [PMID: 34944570 PMCID: PMC8698556 DOI: 10.3390/biomedicines9121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)—or Machado–Joseph disease (MJD)—is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation—particularly in the cerebellum and basal ganglia—while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.
Collapse
|
10
|
Mohseni YR, Saleem A, Tung SL, Dudreuilh C, Lang C, Peng Q, Volpe A, Adigbli G, Cross A, Hester J, Farzaneh F, Scotta C, Lechler RI, Issa F, Fruhwirth GO, Lombardi G. Chimeric antigen receptor-modified human regulatory T cells that constitutively express IL-10 maintain their phenotype and are potently suppressive. Eur J Immunol 2021; 51:2522-2530. [PMID: 34320225 PMCID: PMC8581768 DOI: 10.1002/eji.202048934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/30/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Clinical trials of Treg therapy in transplantation are currently entering phases IIa and IIb, with the majority of these employing polyclonal Treg populations that harbor a broad specificity. Enhancing Treg specificity is possible with the use of chimeric antigen receptors (CARs), which can be customized to respond to a specific human leukocyte antigen (HLA). In this study, we build on our previous work in the development of HLA-A2 CAR-Tregs by further equipping cells with the constitutive expression of interleukin 10 (IL-10) and an imaging reporter as additional payloads. Cells were engineered to express combinations of these domains and assessed for phenotype and function. Cells expressing the full construct maintained a stable phenotype after transduction, were specifically activated by HLA-A2, and suppressed alloresponses potently. The addition of IL-10 provided an additional advantage to suppressive capacity. This study therefore provides an important proof-of-principle for this cell engineering approach for next-generation Treg therapy in transplantation.
Collapse
Affiliation(s)
- Yasmin R. Mohseni
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Adeel Saleem
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
- Department of Haematology and Precision MedicineKings College HospitalLondonUK
| | - Sim L. Tung
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Caroline Dudreuilh
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Cameron Lang
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - Qi Peng
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Alessia Volpe
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - George Adigbli
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Amy Cross
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Joanna Hester
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Farzin Farzaneh
- Department of Haematological MedicineSchool of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - Cristiano Scotta
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Robert I. Lechler
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Fadi Issa
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - Giovanna Lombardi
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| |
Collapse
|
11
|
Willekens B, Wens I, Wouters K, Cras P, Cools N. Safety and immunological proof-of-concept following treatment with tolerance-inducing cell products in patients with autoimmune diseases or receiving organ transplantation: A systematic review and meta-analysis of clinical trials. Autoimmun Rev 2021; 20:102873. [PMID: 34119672 DOI: 10.1016/j.autrev.2021.102873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
In the past years, translational approaches have led to early-stage clinical trials assessing safety and efficacy of tolerance-inducing cell-based treatments in patients. This review aims to determine if tolerance-inducing cell-based therapies, including dendritic cells, regulatory T cells and mesenchymal stem cells, are safe in adult patients who underwent organ transplantation or in those with autoimmune diseases, including multiple sclerosis, diabetes mellitus type 1, Crohn's disease and rheumatoid arthritis. Immunological and clinical outcomes were reviewed, to provide evidence for proof-of-concept and efficacy. To summarize the current knowledge, a systematic review and meta-analysis were conducted. A total of 8906 records were reviewed by 2 independent assessors and 48 records were included in the final quantitative analysis. The overall frequency of serious adverse events was low: 0.018 (95% CI: 0.006-0.051). Immunological outcomes could not be assessed quantitatively because of heterogeneity in outcome assessments and description as well as lack of individual data. Most randomized controlled studies were at a medium risk of bias due to open-label treatment without masking of assessors and/or patients to the intervention. In conclusion, tolerance-inducing cell-based therapies are safe. We advocate for harmonization of study protocols of trials investigating cell-based therapies, adverse event reporting and systematic inclusion of immunological outcome measures in clinical trials evaluating tolerance-inducingcell-basedtreatment. Registration: PROSPERO, registration number CRD42020170557.
Collapse
Affiliation(s)
- Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Inez Wens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Kristien Wouters
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Belgium
| | - Patrick Cras
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|