1
|
Akiyama M, Wakasugi S, Yoshimoto K, Saito K, Ishigaki S, Inukai R, Matsuno Y, Alshehri W, Kondo Y, Kaneko Y. CX3CR1 + age-associated CD4 + T cells contribute to synovial inflammation in late-onset rheumatoid arthritis. Inflamm Regen 2025; 45:4. [PMID: 39910629 PMCID: PMC11800492 DOI: 10.1186/s41232-025-00367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Recent evidence suggests that clonally expanded cytotoxic T cells play a role in various autoimmune diseases. Late-onset rheumatoid arthritis (LORA) exhibits unique characteristics compared to other RA forms, suggesting distinct immunological mechanisms. This study aimed to examine the involvement of cytotoxic T cells in LORA. METHODS Fresh peripheral blood samples were collected from 78 treatment-naïve active RA patients, 12 with difficult-to-treat RA, and 16 healthy controls. Flow cytometry was employed to measure the proportions of CX3CR1+cytotoxic CD4+ and CD8+ T cells in these samples. Additionally, immunohistochemical staining was performed on lymphoid node and synovial biopsy samples from patients with RA. RESULTS CX3CR1+cytotoxic CD4+ T cells were specifically increased in untreated, active patients with LORA, displaying features of CXCR3mid age-associated T helper cells known as "ThA". CX3CR1⁺CD4⁺ T cells were identified as a cytotoxic ThA subset, as nearly all of these cells specifically expressed granzyme B. These cells were observed in enlarged lymph nodes and were found to infiltrate synovial tissues from patients with LORA. The proportions of CX3CR1+CD4+ T cells positively correlated with arthritis activity in LORA. The number of cells decreased after treatment with methotrexate, tumor necrosis factor inhibitors, and interleukin-6 inhibitors, whereas T-cell activation modulators did not affect them. Moreover, PD-1+CD38+CX3CR1+CD4+ T cells were identified as a treatment-resistant T cell subset that was characteristically increased in difficult-to-treat RA. CX3CR1+CD8+ T cells showed no significant difference between RA patients and healthy individuals, and no correlation with disease activity was observed. However, a correlation with age was observed in RA patients. CONCLUSIONS Our findings suggest that the immunopathogenesis of RA differs by age of onset, with CX3CR1+ age-associated cytotoxic CD4+ T cells playing a significant role in LORA. Additionally, the presence of a specific CX3CR1+ T cell subset may be linked to treatment resistance.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Sohma Wakasugi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Koichi Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Risa Inukai
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yoshiyuki Matsuno
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
2
|
Ghasemi N, Holder KA, Ings DP, Grant MD. Enhancement of Human Immunodeficiency Virus-Specific CD8 + T Cell Responses with TIGIT Blockade Involves Trogocytosis. Pathogens 2024; 13:1137. [PMID: 39770396 PMCID: PMC11679564 DOI: 10.3390/pathogens13121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Natural killer (NK) and CD8+ T cell function is compromised in human immunodeficiency virus type 1 (HIV-1) infection by increased expression of inhibitory receptors such as TIGIT (T cell immunoreceptor with Ig and ITIM domains). Blocking inhibitory receptors or their ligands with monoclonal antibodies (mAb) has potential to improve antiviral immunity in general and facilitate HIV eradication strategies. We assessed the impact of TIGIT engagement and blockade on cytotoxicity, degranulation, and interferon-gamma (IFN-γ) production by CD8+ T cells from persons living with HIV (PLWH). The effect of TIGIT engagement on non-specific anti-CD3-redirected cytotoxicity was assessed in redirected cytotoxicity assays, and the effect of TIGIT blockade on HIV-specific CD8+ T cell responses was assessed by flow cytometry. In 14/19 cases where peripheral blood mononuclear cells (PBMC) mediated >10% redirected cytotoxicity, TIGIT engagement reduced the level of cytotoxicity to <90% of control values. We selected PLWH with >1000 HIV Gag or Nef-specific IFN-γ spot forming cells per million PBMC to quantify the effects of TIGIT blockade on HIV-specific CD8+ T cell responses by flow cytometry. Cell surface TIGIT expression decreased on CD8+ T cells from 23/40 PLWH following TIGIT blockade and this loss was associated with increased anti-TIGIT mAb fluorescence on monocytes. In total, 6 of these 23 PLWH had enhanced HIV-specific CD8+ T cell degranulation and IFN-γ production with TIGIT blockade, compared to 0/17 with no decrease in cell surface TIGIT expression. Reduced CD8+ T cell TIGIT expression with TIGIT blockade involved trogocytosis by circulating monocytes, suggesting that an effector monocyte population and intact fragment crystallizable (Fc) functions are required for mAb-based TIGIT blockade to effectively enhance HIV-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Nazanin Ghasemi
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (N.G.); (K.A.H.); (D.P.I.)
| | - Kayla A. Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (N.G.); (K.A.H.); (D.P.I.)
- Department of Biomedical Informatics, University of Colorado School of Medicine, Denver, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Danielle P. Ings
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (N.G.); (K.A.H.); (D.P.I.)
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (N.G.); (K.A.H.); (D.P.I.)
| |
Collapse
|
3
|
Hermans D, van Beers L, Broux B. Nectin Family Ligands Trigger Immune Effector Functions in Health and Autoimmunity. BIOLOGY 2023; 12:452. [PMID: 36979144 PMCID: PMC10045777 DOI: 10.3390/biology12030452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The superfamily of immunoglobulin cell-adhesion molecules (IgCAMs) is a well-known family of cell-adhesion molecules used for immune-cell extravasation and cell-cell interaction. Amongst others, this family includes DNAX accessory molecule 1 (DNAM-1/CD226), class-I-restricted T-cell-associated molecule (CRTAM/CD355), T-cell-activated increased late expression (Tactile/CD96), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), Nectins and Nectin-like molecules (Necls). Besides using these molecules to migrate towards inflammatory sites, their interactions within the immune system can support the immunological synapse with antigen-presenting cells or target cells for cytotoxicity, and trigger diverse effector functions. Although their role is generally described in oncoimmunity, this review emphasizes recent advances in the (dys)function of Nectin-family ligands in health, chronic inflammatory conditions and autoimmune diseases. In addition, this review provides a detailed overview on the expression pattern of Nectins and Necls and their ligands on different immune-cell types by focusing on human cell systems.
Collapse
Affiliation(s)
- Doryssa Hermans
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Lisa van Beers
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| |
Collapse
|
4
|
Garnica M, Aiello A, Ligotti ME, Accardi G, Arasanz H, Bocanegra A, Blanco E, Calabrò A, Chocarro L, Echaide M, Kochan G, Fernandez-Rubio L, Ramos P, Pojero F, Zareian N, Piñeiro-Hermida S, Farzaneh F, Candore G, Caruso C, Escors D. How Can We Improve the Vaccination Response in Older People? Part II: Targeting Immunosenescence of Adaptive Immunity Cells. Int J Mol Sci 2022; 23:9797. [PMID: 36077216 PMCID: PMC9456031 DOI: 10.3390/ijms23179797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.
Collapse
Affiliation(s)
- Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
5
|
CD155 in tumor progression and targeted therapy. Cancer Lett 2022; 545:215830. [PMID: 35870689 DOI: 10.1016/j.canlet.2022.215830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.
Collapse
|
6
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
7
|
Rodés B, Cadiñanos J, Esteban-Cantos A, Rodríguez-Centeno J, Arribas JR. Ageing with HIV: Challenges and biomarkers. EBioMedicine 2022; 77:103896. [PMID: 35228014 PMCID: PMC8889090 DOI: 10.1016/j.ebiom.2022.103896] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The antiretroviral treatment (ART) developed to control HIV infection led to a revolution in the prognosis of people living with HIV (PLWH). PLWH underwent from suffering severe disease and often fatal complications at young ages to having a chronic condition and a life expectancy close to the general population. Nevertheless, chronic age-related diseases increase as PLWH age. The harmful effect of HIV infection on the individual's immune system adds to its deterioration during ageing, exacerbating comorbidities. In addition, PLWH are more exposed to risk factors affecting ageing, such as coinfections or harmful lifestyles. The ART initiation reverses the biological ageing process but only partially, and additionally can have some toxicities that influence ageing. Observational studies suggest premature ageing in PLWH. Therefore, there is considerable interest in the early prediction of unhealthy ageing through validated biomarkers, easy to implement in HIV-clinical settings. The most promising biomarkers are second-generation epigenetic clocks and integrative algorithms.
Collapse
Affiliation(s)
- Berta Rodés
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz Institute for Health Research-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain; CIBER of Infectious Diseases (CIBER-INFECT), 28029 Madrid, Spain.
| | - Julen Cadiñanos
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz Institute for Health Research-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain; Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario La Paz, Paseo de la Castellana 261, Madrid 28046, Spain; CIBER of Infectious Diseases (CIBER-INFECT), 28029 Madrid, Spain
| | - Andrés Esteban-Cantos
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz Institute for Health Research-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain; CIBER of Infectious Diseases (CIBER-INFECT), 28029 Madrid, Spain
| | - Javier Rodríguez-Centeno
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz Institute for Health Research-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain; CIBER of Infectious Diseases (CIBER-INFECT), 28029 Madrid, Spain
| | - José Ramón Arribas
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz Institute for Health Research-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain; Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario La Paz, Paseo de la Castellana 261, Madrid 28046, Spain; CIBER of Infectious Diseases (CIBER-INFECT), 28029 Madrid, Spain.
| |
Collapse
|