1
|
Shrestha BK, Sujakhu E, Karale S, Telagarapu VML. COVID-19 in patients with multiple sclerosis-A narrative review. Mult Scler Relat Disord 2025; 93:106221. [PMID: 39675123 DOI: 10.1016/j.msard.2024.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/02/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by immune dysregulation, affecting over 2.5 million people worldwide. Interestingly, COVID-19 infection can cause neurodegeneration through demyelination similar to that of MS, and COVID-19 infection can lead to long-term neurological sequelae, post-COVID-19 neurological syndrome. These overlapping neurological mechanisms suggest that patients with MS (PwMS) may have a unique and potentially more complex relationship with COVID-19. DISCUSSION AND CONCLUSION The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can enter the central nervous system via the olfactory nerve or through interactions with angiotensin-converting enzyme-2 receptors in the blood-brain barrier, potentially initiating or enhancing neurodegenerative processes through demyelination. The risk of SARS-CoV-2 infection among PwMS is similar to that of the general population; however, PwMS with higher Expanded Disability Status Scale scores, longer MS duration, or progressive forms of MS are at an increased risk for developing severe COVID-19 outcomes. Most disease-modifying therapies (DMT), such as interferon, glatiramer, teriflunomide, and cladribine, do not appear to affect the risk of COVID-19 infection, the severity of COVID-19 illness, or the response to COVID-19 vaccines. As a result, these therapies should be continued during COVID-19 infection in PwMS. Rituximab, however, has been shown to increase the risk of severe COVID-19 outcomes. For managing symptomatic COVID-19 infection in PwMS, remdesivir and neutralizing monoclonal antibodies are shown to be effective. COVID-19-associated cytokine release syndrome can be managed with corticosteroids. Importantly, COVID-19 infection does not increase susceptibility to MS relapses or exacerbate the progression of MS symptoms. Furthermore, COVID-19 vaccination is encouraged for all MS patients, particularly those at greater risk of severe outcomes, as it does not trigger relapses, exacerbate MS symptoms, or diminish the efficacy of DMT. Despite these findings, high-quality evidence remains lacking to fully establish the relationship between COVID-19 and MS, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Bijay Kumar Shrestha
- University of South Alabama Children's and Women's Hospital, Mobile, AL, United States.
| | - Eru Sujakhu
- University of South Alabama Children's and Women's Hospital, Mobile, AL, United States
| | - Smruti Karale
- Government Medical College, Kolhapur, Maharashtra, India
| | | |
Collapse
|
2
|
Chaves JCS, Milton LA, Stewart R, Senapati T, Rantanen LM, Wasielewska JM, Lee S, Hernández D, McInnes L, Quek H, Pébay A, Donnelly PS, White AR, Oikari LE. Differential Cytokine Responses of APOE3 and APOE4 Blood-brain Barrier Cell Types to SARS-CoV-2 Spike Proteins. J Neuroimmune Pharmacol 2024; 19:22. [PMID: 38771543 DOI: 10.1007/s11481-024-10127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Queensland University of Technology, Brisbane (QLD), Australia
| | - Laura A Milton
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
| | - Romal Stewart
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
| | | | - Laura M Rantanen
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Queensland University of Technology, Brisbane (QLD), Australia
| | - Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Faculty of Medicine, The University of Queensland, Brisbane (QLD), Australia
| | - Serine Lee
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville (VIC), Australia
| | - Lachlan McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville (VIC), Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Queensland University of Technology, Brisbane (QLD), Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane (QLD), Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville (VIC), Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville (VIC), Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville (VIC), Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane (QLD), Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia.
- Queensland University of Technology, Brisbane (QLD), Australia.
| |
Collapse
|
3
|
Bavarsad K, Shalil Ahmadi D, Momeni M, Yadyad MJ, Salehi Kahyesh R, Moradzadegan H, Ghafouri S. Evaluation of the relationship between serum BDNF concentration and indicators of oxidative stress and inflammation in COVID-19 patients with neurological disorders - a pilot study. Neurol Res 2024; 46:33-41. [PMID: 37706246 DOI: 10.1080/01616412.2023.2257448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION The aim of this study was to determine the effect of serum level of brain-derived neurotrophic factor (BDNF) on the development of neurological disorders in COVID-19 patients and the probable role of oxidative stress and inflammation in this phenomenon. METHODS The present case-control study included 42 COVID-19 patients referring to Golestan and Sina hospitals of Ahvaz, Iran, for treatment. Patients with (n = 18) and without (n = 24) neurological disorders were allocated into test and control groups, respectively. Following blood sampling, serum isolation was done, and the serum was stored at -80°C until biochemical assessment for measuring BDNF, oxidative stress indices, and inflammatory factors. RESULTS Although no significant brain damage was observed in the COVID-19 patients with neurological disorders, the results showed that the serum level of BDNF in the test group increased compared to that in the control group, and this increment was accompanied with increased Tumor Necrosis Factor-alpha (TNF-α) and decreased Interferon gamma (IFN-γ) levels in the serum. Moreover, compared to the control group, patients in the test group had a decreased level of Thiol and an increased level of Malondialdehyde (MDA) in the serum. Furthermore, there was a significant positive correlation between the serum concentration of BDNF and nitric oxide (NO) in the test group. CONCLUSION Using over-the-counter (OTC) medicines which include thiol-group-related agents or any other antioxidants can alleviate oxidative stress and the associated increased inflammation in COVID-19 patients with neurological symptoms.
Collapse
Affiliation(s)
- Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Davood Shalil Ahmadi
- Department of Neurology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Momeni
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Yadyad
- Department of Infection Disease, Sina Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Salehi Kahyesh
- Thalasemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Samireh Ghafouri
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Bowen DR, Pathak S, Nadar RM, Parise RD, Ramesh S, Govindarajulu M, Moore A, Ren J, Moore T, Dhanasekaran M. Oxidative stress and COVID-19-associated neuronal dysfunction: mechanisms and therapeutic implications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1153-1167. [PMID: 37357527 PMCID: PMC10465323 DOI: 10.3724/abbs.2023085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/27/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.
Collapse
Affiliation(s)
- Dylan R. Bowen
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rishi M. Nadar
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rachel D. Parise
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Sindhu Ramesh
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Austin Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai200032China
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA
| | - Timothy Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | | |
Collapse
|
5
|
Th-1, Th-2, Th-9, Th-17, Th-22 type cytokine concentrations of critical COVID-19 patients after treatment with Remdesivir. Immunobiology 2023; 228:152378. [PMID: 37058846 PMCID: PMC10036294 DOI: 10.1016/j.imbio.2023.152378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world causing a pandemic known as coronavirus disease 2019 (COVID-19). Cytokine storm was directly correlated with severity of COVID-19 syndromes. We evaluated the levels of 13 cytokines in ICU hospitalized COVID-19 patients (n=29) before, and after treatment with Remdesivir as well as in healthy controls (n=29). Blood samples were obtained from ICU patients during ICU admission (before treatment) and 5 days after treatment with Remdesivir. A group of 29 age- and gender-matched healthy controls was also studied. Cytokine levels were evaluated by multiplex immunoassay method using a fluorescence labeled cytokine panel. In comparison to cytokine levels measured at ICU admission, serum levels were reduced of IL-6 (134.75 pg/mL vs. 20.73 pg/mL, P< 0.0001), TNF-α (121.67 pg/mL vs. 10.15 pg/mL, P< 0.0001) and IFN-γ (29.69 pg/mL vs. 22.27 pg/mL, P= 0.005), whereas serum level was increased of IL-4 (8.47 pg/mL vs. 12.44 pg/mL, P= 0.002) within 5 days after Remdesivir treatment. Comparing with before treatment, Remdesivir significantly reduced the levels of inflammatory (258.98 pg/mL vs. 37.43 pg/mL, P< 0.0001), Th1-type (31.24 pg/mL vs. 24.46 pg/mL, P= 0.007), and Th17-type (36.79 pg/mL vs. 26.22 pg/mL, P< 0.0001) cytokines in critical COVID-19 patients. However, after Remdesivir treatment, the concentrations of Th2-type cytokines were significantly higher than before treatment (52.69 pg/mL vs. 37.09 pg/mL, P< 0.0001). In conclusion, Remdesivir led to decrease levels of Th1-type and Th17-type cytokines and increase Th2-type cytokines in critical COVID-19 patients 5 days after treatment.
Collapse
|
6
|
Gu Y, Low JM, Tan JSY, Ng MSF, Ng LFP, Shunmuganathan B, Gupta R, MacAry PA, Amin Z, Lee LY, Lian D, Shek LPC, Zhong Y, Wang LW. Immune and pathophysiologic profiling of antenatal coronavirus disease 2019 in the GIFT cohort: A Singaporean case-control study. Front Pediatr 2022; 10:949756. [PMID: 36186648 PMCID: PMC9521552 DOI: 10.3389/fped.2022.949756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 can be severe in pregnant women, and have adverse consequences for the subsequent infant. We profiled the post-infectious immune responses in maternal and child blood as well as breast milk in terms of antibody and cytokine expression and performed histopathological studies on placentae obtained from mothers convalescent from antenatal COVID-19. Seventeen mother-child dyads (8 cases of antenatal COVID-19 and 9 healthy unrelated controls; 34 individuals in total) were recruited to the Gestational Immunity For Transfer (GIFT) study. Maternal and infant blood, and breast milk samples were collected over the first year of life. All samples were analyzed for IgG and IgA against whole SARS-CoV-2 spike protein, the spike receptor-binding domain (RBD), and previously reported immunodominant epitopes, as well as cytokine levels. The placentae were examined microscopically. The study is registered at clinicaltrials.gov under the identifier NCT04802278. We found high levels of virus-specific IgG in convalescent mothers and similarly elevated titers in newborn children. Thus, antenatal SARS-CoV-2 infection led to high plasma titers of virus-specific antibodies in infants postnatally. However, this waned within 3-6 months of life. Virus neutralization by plasma was not uniformly achieved, and the presence of antibodies targeting known immunodominant epitopes did not assure neutralization. Virus-specific IgA levels were variable among convalescent individuals' sera and breast milk. Antibody transfer ratios and the decay of transplacentally transferred virus-specific antibodies in neonatal circulation resembled that for other pathogens. Convalescent mothers showed signs of chronic inflammation marked by persistently elevated IL17RA levels in their blood. Four placentae presented signs of acute inflammation, particularly in the subchorionic region, marked by neutrophil infiltration even though > 50 days had elapsed between virus clearance and delivery. Administration of a single dose of BNT162b2 mRNA vaccine to mothers convalescent from antenatal COVID-19 increased virus-specific IgG and IgA titers in breast milk, highlighting the importance of receiving the vaccine even after natural infection with the added benefit of enhanced passive immunity.
Collapse
Affiliation(s)
- Yue Gu
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Ming Low
- Department of Neonatology, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Melissa Shu Feng Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa F. P. Ng
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bhuvaneshwari Shunmuganathan
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rashi Gupta
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul A. MacAry
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zubair Amin
- Department of Neonatology, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Le Ye Lee
- Department of Neonatology, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Lian
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Youjia Zhong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
7
|
Kalinina O, Golovkin A, Zaikova E, Aquino A, Bezrukikh V, Melnik O, Vasilieva E, Karonova T, Kudryavtsev I, Shlyakhto E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int J Mol Sci 2022; 23:8879. [PMID: 36012146 PMCID: PMC9408700 DOI: 10.3390/ijms23168879] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hypercytokinemia, found in SARS-CoV-2 infection, contributes to multiple organ dysfunctions with acute respiratory distress syndrome, shock etc. The aim of this study was to describe cytokine storm signatures in patients with acute COVID-19 and to investigate their influence on severity of the infection. Plasma levels of 47 cytokines were investigated in 73 patients with moderate and severe COVID-19 (41 and 32, respectively) and 11 healthy donors (HD). The most elevated levels comparing patients and the HD were observed for seven pro-inflammatory cytokines (IL-6, IL-8, IL-15, IL-18, IL-27, IFNγ, TNFα), three chemokines (GROα, IP-10, MIG), two anti-inflammatory cytokines (IL-1RA, IL-10), and two growth factors (G-CSF, M-CSF). The patients with severe disease had significantly higher levels of FGF-2/FGF-basic, IL-1β, and IL-7 compared to the HD. The two groups of patients differed from each other only based on the levels of EGF, eotaxin, and IL-12 p40. Pneumonia lung injury, characterized by computer tomography, positively correlated with levels of EGF, IP-10, MCP-3 levels and negatively with IL-12 p40. Pro-inflammatory factors including IL-6, TNFα, and IP-10 negatively correlated with the frequency of the circulating T-helper17-like cells (Th17-like) and follicular Th cells that are crucial to develop SARS-CoV-2-specific plasma cells and memory B cells. Obtained data on the cytokine levels illustrate their influence on progression and severity of COVID-19.
Collapse
Affiliation(s)
- Olga Kalinina
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Alexey Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Ekaterina Zaikova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Arthur Aquino
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Vadim Bezrukikh
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Olesya Melnik
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Elena Vasilieva
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Tatiana Karonova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
8
|
Asgarzadeh A, Fouladi N, Asghariazar V, Sarabi SF, Khiavi HA, Mahmoudi M, Safarzadeh E. Serum Brain-Derived Neurotrophic Factor (BDNF) in COVID-19 Patients and its Association with the COVID-19 Manifestations. J Mol Neurosci 2022; 72:1820-1830. [PMID: 35749045 PMCID: PMC9243868 DOI: 10.1007/s12031-022-02039-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/05/2022] [Indexed: 12/19/2022]
Abstract
COVID-19 is a systematic disease that frequently implies neurological and non-neurological manifestations, predominantly by inducing hypoxia. Brain-derived neurotrophic factor (BDNF) is a key factor in regulating functions of nervous and respiratory systems and has been strongly related to hypoxia. Therefore, this study planned to investigate BDNF association with the COVID-19 manifestations especially neurological impairments and the infection-induced hypoxia. We enrolled sixty-four COVID-19 patients and twenty-four healthy individuals in this study. Patients were divided into two groups, with and without neurological manifestations, and their serum BDNF levels were measured by enzyme-linked immunosorbent assay (ELISA). COVID-19 patients had significantly lower BDNF levels than healthy individuals (p = 0.023). BDNF levels were significantly lower in patients with neurological manifestations compared to healthy individuals (p = 0.010). However, we did not observe a statistically significant difference in BDNF levels between patients with and without neurological manifestations (p = 0.175). BDNF’s levels were significantly lower in patients with CNS manifestations (p = 0.039) and higher in patients with fever (p = 0.03) and dyspnea (p = 0.006). Secondly, BDNF levels have a significant negative association with oxygen therapy requirement (p = 0.015). These results strongly suggest the critical association between dysregulated BDNF and hypoxia in promoting COVID-19 manifestations, particularly neurological impairments.
Collapse
Affiliation(s)
- Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasrin Fouladi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahnaz Fooladi Sarabi
- Fellowship of Critical Care Medicine, Department of Anesthesiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamid Afzoun Khiavi
- Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahsa Mahmoudi
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
9
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2257-2264. [DOI: 10.1093/jac/dkac144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
|