1
|
Meyer G, Siemes AR, Kühne JF, Bevzenko I, Baszczok V, Keil J, Beushausen K, Wagner K, Steinbrück L, Messerle M, Falk CS. HCMV Variants Expressing ULBP2 Enhance the Function of Human NK Cells via its Receptor NKG2D. Eur J Immunol 2025; 55:e202451266. [PMID: 39931744 PMCID: PMC11811812 DOI: 10.1002/eji.202451266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
The immunosuppressed state of transplant patients allows opportunistic pathogens such as human cytomegalovirus (HCMV) to cause severe disease. Therefore, inducing and boosting immunity against HCMV in recipients prior to organ transplantation is highly desirable, and accordingly, the development of an HCMV vaccine has been identified as a clinically relevant priority. Such vaccines need to be highly attenuated while eliciting specific and protective immune responses. We tested the concept of expressing the NKG2D ligand (NKG2D-L) ULBP2 by HCMV vaccine candidates to achieve NK cell activation, and, thereby viral attenuation. ULBP2 expression was found on HCMV-infected cells, reflecting the promotor strengths used to drive ULBP2 transgene expression. Moreover, significantly increased shedding of soluble ULBP2 (sULBP2) was detected for these mutants mirroring the surface expression levels. No negative effect of sULBP2 on NK cell function was observed. NK cells efficiently controlled viral spread, which was further increased by additional triggering of the activating receptor NKG2D. Engagement of NKG2D was also confirmed by its downregulation depending on ULBP2 surface density. Finally, expression of ULBP2 significantly enhanced NK cell cytotoxicity, which was independent of KIR-ligand mismatch as well as the presence of T cells. This NKG2D-L-based approach represents a feasible and promising strategy for HCMV vaccine development.
Collapse
Affiliation(s)
- Greta Meyer
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | | | - Jenny F. Kühne
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Irina Bevzenko
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Viktoria Baszczok
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Jana Keil
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Kerstin Beushausen
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Karen Wagner
- Institute of VirologyHannover Medical SchoolHannoverGermany
| | | | | | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF)TTU‐IICH (Infection of the immunocompromised host)Hannover/BraunschweigGermany
| |
Collapse
|
2
|
Metzdorf K, Jacobsen H, Kim Y, Teixeira Alves LG, Kulkarni U, Brdovčak MC, Materljan J, Eschke K, Chaudhry MZ, Hoffmann M, Bertoglio F, Ruschig M, Hust M, Šustić M, Krmpotić A, Jonjić S, Widera M, Ciesek S, Pöhlmann S, Landthaler M, Čičin-Šain L. A single-dose MCMV-based vaccine elicits long-lasting immune protection in mice against distinct SARS-CoV-2 variants. Front Immunol 2024; 15:1383086. [PMID: 39119342 PMCID: PMC11306140 DOI: 10.3389/fimmu.2024.1383086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Current vaccines against COVID-19 elicit immune responses that are overall strong but wane rapidly. As a consequence, the necessary booster shots have contributed to vaccine fatigue. Hence, vaccines that would provide lasting protection against COVID-19 are needed, but are still unavailable. Cytomegaloviruses (CMVs) elicit lasting and uniquely strong immune responses. Used as vaccine vectors, they may be attractive tools that obviate the need for boosters. Therefore, we tested the murine CMV (MCMV) as a vaccine vector against COVID-19 in relevant preclinical models of immunization and challenge. We have previously developed a recombinant MCMV vaccine vector expressing the spike protein of the ancestral SARS-CoV-2 (MCMVS). In this study, we show that the MCMVS elicits a robust and lasting protection in young and aged mice. Notably, spike-specific humoral and cellular immunity was not only maintained but also even increased over a period of at least 6 months. During that time, antibody avidity continuously increased and expanded in breadth, resulting in neutralization of genetically distant variants, like Omicron BA.1. A single dose of MCMVS conferred rapid virus clearance upon challenge. Moreover, MCMVS vaccination controlled two variants of concern (VOCs), the Beta (B.1.135) and the Omicron (BA.1) variants. Thus, CMV vectors provide unique advantages over other vaccine technologies, eliciting broadly reactive and long-lasting immune responses against COVID-19.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Muromegalovirus/immunology
- Muromegalovirus/genetics
- Female
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice, Inbred BALB C
- Humans
- Genetic Vectors
- Immunity, Cellular
- Immunity, Humoral
- Disease Models, Animal
Collapse
Affiliation(s)
- Kristin Metzdorf
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Yeonsu Kim
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | | | - Jelena Materljan
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Kathrin Eschke
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marko Šustić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- German Centre for Infection Research (DZIF), External Partner Site Frankfurt, Frankfurt, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Brdovčak MC, Materljan J, Šustić M, Ravlić S, Ružić T, Lisnić B, Miklić K, Brizić I, Matešić MP, Lisnić VJ, Halassy B, Rončević D, Knežević Z, Štefan L, Bertoglio F, Schubert M, Čičin-Šain L, Markotić A, Jonjić S, Krmpotić A. ChAdOx1-S adenoviral vector vaccine applied intranasally elicits superior mucosal immunity compared to the intramuscular route of vaccination. Eur J Immunol 2022; 52:936-945. [PMID: 35304741 PMCID: PMC9087383 DOI: 10.1002/eji.202249823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
COVID-19 vaccines prevent severe forms of the disease, but do not warrant complete protection against breakthrough infections. This could be due to suboptimal mucosal immunity at the site of virus entry, given that all currently approved vaccines are administered via the intramuscular route. In this study we assessed humoral and cellular immune responses in BALB/c mice after intranasal and intramuscular immunization with adenoviral vector ChAdOx1-S expressing full-length Spike protein of SARS-CoV-2. We showed that both routes of vaccination induced a potent IgG antibody response, as well as robust neutralizing capacity, but intranasal vaccination elicited a superior IgA antibody titer in the sera and in the respiratory mucosa. Bronchoalveolar lavage from intranasally immunized mice efficiently neutralized SARS-CoV-2, which has not been the case in intramuscularly immunized group. Moreover, substantially higher percentages of epitope-specific CD8 T cells exhibiting a tissue resident phenotype were found in the lungs of intranasally immunized animals. Finally, both intranasal and intramuscular vaccination with ChAdOx1-S efficiently protected the mice after the challenge with recombinant herpesvirus expressing the Spike protein. Our results demonstrate that intranasal application of adenoviral vector ChAdOx1-S induces superior mucosal immunity and therefore could be a promising strategy for putting the COVID-19 pandemic under control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maja Cokarić Brdovčak
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Jelena Materljan
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia.,Department of Histology and Embryology, University of Rijeka, Rijeka, 51000, Croatia
| | - Marko Šustić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Sanda Ravlić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Tina Ružić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Berislav Lisnić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Karmela Miklić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Ilija Brizić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | | | - Vanda Juranić Lisnić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | | | | | - Leo Štefan
- JGL d.d. Jadran Galenski Laboratorij, Rijeka, 51 000, Croatia
| | - Federico Bertoglio
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Maren Schubert
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Luka Čičin-Šain
- Helmholtz Center for Infection Research, Department of Viral Immunology, Braunschweig, 38124, Germany
| | - Alemka Markotić
- University Hospital for Infectious Diseases "Fran Mihaljević", Zagreb, 10000, Croatia
| | - Stipan Jonjić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, 51000, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Rijeka, 51000, Croatia
| |
Collapse
|
4
|
CD8 T Cell Vaccines and a Cytomegalovirus-Based Vector Approach. Life (Basel) 2021; 11:life11101097. [PMID: 34685468 PMCID: PMC8538937 DOI: 10.3390/life11101097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
The twentieth century witnessed a huge expansion in the number of vaccines used with great success in combating diseases, especially the ones caused by viral and bacterial pathogens. Despite this, several major public health threats, such as HIV, tuberculosis, malaria, and cancer, still pose an enormous humanitarian and economic burden. As vaccines based on the induction of protective, neutralizing antibodies have not managed to effectively combat these diseases, in recent decades, the focus has increasingly shifted towards the cellular immune response. There is substantial evidence demonstrating CD8 T cells as key players in the protection not only against many viral and bacterial pathogens, but also in the fight against neoplastic cells. Here, we present arguments for CD8 T cells to be considered as promising candidates for vaccine targeting. We discuss the heterogeneity of CD8 T cell populations and their contribution in the protection of the host. We also outline several strategies of using a common human pathogen, cytomegalovirus, as a vaccine vector since accumulated data strongly suggest it represents a promising approach to the development of novel vaccines against both pathogens and tumors.
Collapse
|
6
|
Thurm C, Schraven B, Kahlfuss S. ABC Transporters in T Cell-Mediated Physiological and Pathological Immune Responses. Int J Mol Sci 2021; 22:ijms22179186. [PMID: 34502100 PMCID: PMC8431589 DOI: 10.3390/ijms22179186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent a heterogeneous group of ATP-dependent transport proteins, which facilitate the import and/or export of various substrates, including lipids, sugars, amino acids and peptides, ions, and drugs. ABC transporters are involved in a variety of physiological processes in different human tissues. More recent studies have demonstrated that ABC transporters also regulate the development and function of different T cell populations, such as thymocytes, Natural Killer T cells, CD8+ T cells, and CD4+ T helper cells, including regulatory T cells. Here, we review the current knowledge on ABC transporters in these T cell populations by summarizing how ABC transporters regulate the function of the individual cell types and how this affects the immunity to viruses and tumors, and the course of autoimmune diseases. Furthermore, we provide a perspective on how a better understanding of the function of ABC transporters in T cells might provide promising novel avenues for the therapy of autoimmunity and to improve immunity to infection and cancer.
Collapse
Affiliation(s)
- Christoph Thurm
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|