1
|
Hundhausen N, Majumder S, Xiao Y, Haeusl SS, Goehler H, Seal R, Chiarolla CM, Rosenwald A, Eyrich M, Cicin-Sain L, Berberich-Siebelt F. NFAT single-deficient murine T cells reduce the risk of aGvHD while controlling cytomegalovirus infection. iScience 2025; 28:111937. [PMID: 40028277 PMCID: PMC11872454 DOI: 10.1016/j.isci.2025.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
NFAT is a family of transcription factors whose activation is inhibited by calcineurin inhibitors (CNIs). In allogeneic hematopoietic stem cell transplantation (allo-HCT), CNIs are employed to prevent and treat graft-versus-host disease (GvHD). Unfortunately, control of cytomegalovirus (CMV), which exacerbates clinical outcomes, is simultaneously lost. Since single NFAT deficiency in T cells ameliorates GvHD in our major mismatch model, we investigated whether protection is maintained during CMV infection. Reassuringly, NFAT-deficient T cells still improved GvHD upon acute CMV infection and after allo-HCT in latently CMV-infected mice, showing reduced proinflammatory and cytotoxic potential. In sharp contrast, CMV-specific NFAT-deficient CD8+ inflated memory T cells expanded more and with higher levels of interferon gamma (IFN-γ) and GzmB expression, effectively controlling CMV. Notably, NFAT-deficient inflated memory T cells could migrate to non-lymphoid tissues and fight CMV. Therefore, CMV infection does not interfere with the protective effect of NFAT inhibition to attenuate GvHD while allowing an anti-CMV response.
Collapse
Affiliation(s)
- Nadine Hundhausen
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Snigdha Majumder
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sigrun S. Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Helen Goehler
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Rishav Seal
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Matthias Eyrich
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
2
|
Chaudhry MZ, Borkner L, Kulkarni U, Berberich-Siebelt F, Cicin-Sain L. NFAT signaling is indispensable for persistent memory responses of MCMV-specific CD8+ T cells. PLoS Pathog 2024; 20:e1012025. [PMID: 38346075 PMCID: PMC10890734 DOI: 10.1371/journal.ppat.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cytomegalovirus (CMV) induces a unique T cell response, where antigen-specific populations do not contract, but rather inflate during viral latency. It has been proposed that subclinical episodes of virus reactivation feed the inflation of CMV-specific memory cells by intermittently engaging T cell receptors (TCRs), but evidence of TCR engagement has remained lacking. Nuclear factor of activated T cells (NFAT) is a family of transcription factors, where NFATc1 and NFATc2 signal downstream of TCR in mature T lymphocytes. We show selective impacts of NFATc1 and/or NFATc2 genetic ablations on the long-term inflation of MCMV-specific CD8+ T cell responses despite largely maintained responses to acute infection. NFATc1 ablation elicited robust phenotypes in isolation, but the strongest effects were observed when both NFAT genes were missing. CMV control was impaired only when both NFATs were deleted in CD8+ T cells used in adoptive immunotherapy of immunodeficient mice. Transcriptome analyses revealed that T cell intrinsic NFAT is not necessary for CD8+ T cell priming, but rather for their maturation towards effector-memory and in particular the effector cells, which dominate the pool of inflationary cells.
Collapse
Affiliation(s)
- M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| |
Collapse
|
3
|
Schirmer B, Giehl K, Kubatzky KF. Report of the 24th Meeting on Signal Transduction 2021. Int J Mol Sci 2022; 23:ijms23042015. [PMID: 35216127 PMCID: PMC8877372 DOI: 10.3390/ijms23042015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The annual meeting “Signal Transduction—Receptors, Mediators and Genes” of the Signal Transduction Society (STS) is an interdisciplinary conference which is open to all scientists sharing a common interest in the elucidation of the signaling pathways mediating physiological or pathological processes in the health and disease of humans, animals, plants, fungi, prokaryotes, and protists. The 24th meeting on signal transduction was held from 15 to 17 November 2021 in Weimar, Germany. As usual, keynote presentations by invited scientists introduced the respective workshops, and were followed by speakers chosen from the submitted abstracts. A special workshop focused on “Target Identification and Interaction”. Ample time was reserved for the discussion of the presented data during the workshops. Unfortunately, due to restrictions owing to the SARS-CoV-2 pandemic, the poster sessions—and thus intensive scientific discussions at the posters—were not possible. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institut für Pharmakologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Klaudia Giehl
- Signaltransduktion Zellulärer Motilität, Innere Medizin V, Justus-Liebig-Universität Giessen, Aulweg 128, 35392 Giessen, Germany;
| | - Katharina F. Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-56-38361
| |
Collapse
|
4
|
Rezalotfi A, Fritz L, Förster R, Bošnjak B. Challenges of CRISPR-Based Gene Editing in Primary T Cells. Int J Mol Sci 2022; 23:ijms23031689. [PMID: 35163611 PMCID: PMC8835901 DOI: 10.3390/ijms23031689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
Adaptive T-cell immunotherapy holds great promise for the successful treatment of leukemia, as well as other types of cancers. More recently, it was also shown to be an effective treatment option for chronic virus infections in immunosuppressed patients. Autologous or allogeneic T cells used for immunotherapy are usually genetically modified to express novel T-cell or chimeric antigen receptors. The production of such cells was significantly simplified with the CRISPR/Cas system, allowing for the deletion or insertion of novel genes at specific locations within the genome. In this review, we describe recent methodological breakthroughs that were important for the conduction of these genetic modifications, summarize crucial points to be considered when conducting such experiments, and highlight the potential pitfalls of these approaches.
Collapse
Affiliation(s)
- Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
| | - Lea Fritz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
- Correspondence: ; Tel.: +49-511-532-9731
| |
Collapse
|
5
|
Karl F, Hudecek M, Berberich-Siebelt F, Mackensen A, Mougiakakos D. T-Cell Metabolism in Graft Versus Host Disease. Front Immunol 2021; 12:760008. [PMID: 34777373 PMCID: PMC8586445 DOI: 10.3389/fimmu.2021.760008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Allogeneic-hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for numerous hematological malignancies. Elimination of malignant cells depends on the T-cells' Graft-versus-Tumor (GvT) effect. However, Graft-versus-Host-Disease (GvHD), often co-occurring with GvT, remains an obstacle for therapeutic efficacy. Hence, approaches, which selectively alleviate GvHD without compromising GvT activity, are needed. As already explored for autoimmune and inflammatory disorders, immuno-metabolic interventions pose a promising option to address this unmet challenge. Being embedded in a complex regulatory framework, immunological and metabolic pathways are closely intertwined, which is demonstrated by metabolic reprograming of T-cells upon activation or differentiation. In this review, current knowledge on the immuno-metabolic signature of GvHD-driving T-cells is summarized and approaches to metabolically interfere are outlined. Furthermore, we address the metabolic impact of standard medications for GvHD treatment and prophylaxis, which, in conjunction with the immuno-metabolic profile of alloreactive T-cells, could allow more targeted interventions in the future.
Collapse
Affiliation(s)
- Franziska Karl
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Andreas Mackensen
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|