1
|
Jing R, Fu M, Huang Y, Zhang K, Ye J, Gong F, Jihea Ali Naji Nasser AB, Xu X, Xiao J, Yu G, Lin S, Zhao W, Xu N, Li X, Li Z, Gao S. Oat β-glucan repairs the epidermal barrier by upregulating the levels of epidermal differentiation, cell-cell junctions and lipids via Dectin-1. Br J Pharmacol 2024; 181:1596-1613. [PMID: 38124222 DOI: 10.1111/bph.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Oat β-glucan could ameliorate epidermal hyperplasia and accelerate epidermal barrier repair. Dectin-1 is one of the receptors of β-glucan and many biological functions of β-glucan are mediated by Dectin-1. Dectin-1 promotes wound healing through regulating the proliferation and migration of skin cells. Thus, this study aimed to investigate the role of oat β-glucan and Dectin-1 in epidermal barrier repair. EXPERIMENTAL APPROACH To investigate the role of Dectin-1 in the epidermal barrier, indicators associated with the recovery of a damaged epidermal barrier, including histopathological changes, keratinization, proliferation, apoptosis, differentiation, cell-cell junctions and lipid content were compared between WT and Dectin-1-/- mice. Further, the effect of oat β-glucan on the disruption of the epidermal barrier was also compared between WT and Dectin-1-/- mice. KEY RESULTS Dectin-1 deficiency resulted in delayed recovery and marked keratinization, as well as abnormal levels of keratinocyte differentiation, cell-cell junctions and lipid synthesis during the restoration of the epidermal barrier. Oat β-glucan significantly reduces epidermal hyperplasia, promotes epidermal differentiation, increases cell-cell junction expression, promotes lipid synthesis and ultimately accelerates the recovery of damaged epidermal barriers via Dectin-1. Oat β-glucan could promote CaS receptor expression and activate the PPAR-γ signalling pathway via Dectin-1. CONCLUSION AND IMPLICATIONS Oat β-glucan promote the recovery of damaged epidermal barriers through promoting epidermal differentiation, increasing the expression of cell-cell junctions and lipid synthesis through Dectin-1. Dectin-1 deficiency delay the recovery of epidermal barriers, which indicated that Dectin-1 may be a potential target in epidermal barrier repair.
Collapse
Affiliation(s)
- Rongrong Jing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Mengli Fu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yuhan Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaini Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiabin Ye
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Xiashun Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiali Xiao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Glatthardt T, van Tilburg Bernardes E, Arrieta MC. The mycobiome in atopic diseases: Inducers and triggers. J Allergy Clin Immunol 2023; 152:1368-1375. [PMID: 37865199 DOI: 10.1016/j.jaci.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Atopic diseases are characterized by type 2 inflammation, with high levels of allergen-specific TH2 cell immune responses and elevated production of IgE. These common disorders have increased in incidence around the world, which is partly explained by detrimental disturbances to the early-life intestinal microbiome. Although most studies have focused exclusively on bacterial members of the microbiome, intestinal fungi have started to be recognized for their impact on host immune development and atopy pathogenesis. From this perspective, we review recent findings demonstrating the strong interactions between members of the mycobiome and the host immune system early in life, leading to immune tolerance during eubiosis or inducing sensitization and overt TH2 cell responses during dysbiosis. Current evidence places intestinal fungi as central players in the development of allergic diseases and potential targets for atopy prevention and treatments.
Collapse
Affiliation(s)
- Thais Glatthardt
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary
| | - Erik van Tilburg Bernardes
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary
| | - Marie-Claire Arrieta
- the Department of Physiology and Pharmacology, University of Calgary, Calgary; the International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary; the Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary.
| |
Collapse
|
3
|
Lin P, Zhang J, Xie G, Li J, Guo C, Lin H, Zhang Y. Innate Immune Responses to Sporothrix schenckii: Recognition and Elimination. Mycopathologia 2022; 188:71-86. [PMID: 36329281 DOI: 10.1007/s11046-022-00683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Sporothrix schenckii (S. schenckii), a ubiquitous thermally dimorphic fungus, is the etiological agent of sporotrichosis, affecting immunocompromised and immunocompetent individuals. Despite current antifungal regimens, sporotrichosis results in prolonged treatment and significant mortality rates in the immunosuppressed population. The innate immune system forms the host's first and primary line of defense against S. schenckii, which has a bi-layered cell wall structure. Many components act as pathogen-associated molecular patterns (PAMPs) in pathogen-host interactions. PAMPs are recognized by pattern recognition receptors (PRRs) such as toll-like receptors, C-type lectin receptors, and complement receptors, triggering innate immune cells such as neutrophils, macrophages, and dendritic cells to phagocytize or produce mediators, contributing to S. schenckii elimination. The ultrastructure of S. schenckii and pathogen-host interactions, including PRRs and innate immune cells, are summarized in this review, promoting a better understanding of the innate immune response to S. schenckii and aiding in the development of protective and therapeutic strategies to combat sporotrichosis.
Collapse
Affiliation(s)
- Peng Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junchen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenqi Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyue Lin
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
4
|
He Q, Li M, Cao J, Zhang M, Feng C. Diagnosis values of Dectin-1 and IL-17 levels in plasma for invasive pulmonary aspergillosis in bronchiectasis. Front Cell Infect Microbiol 2022; 12:1018499. [PMID: 36304934 PMCID: PMC9592802 DOI: 10.3389/fcimb.2022.1018499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Among immunocompetent patients, patients with bronchiectasis are considered to be a high-risk group for invasive pulmonary aspergillosis (IPA). Early diagnosis and treatment can improve the prognosis of patients. Objectives We aimed to investigate the diagnostic value of Dectin-1 and IL-17 for diagnosing IPA with bronchiectasis. Methods We retrospectively collected data on patients with bronchiectasis who had been hospitalized in the Third Affiliated Hospital of Soochow University between September 2018 to December 2021. Dectin-1, IL-17 and GM were measured by enzyme-linked immunosorbent assays. Results A total of 129 patients were analyzed in the study, of whom 33 had proven or probable IPA with bronchiectasis. The remaining 96 patients served as controls. The plasma Dectin-1 and IL-17 levels in the IPA group were significantly higher than that in the control group (P=0.005; P<0.001). The plasma GM, BALF GM, plasma Dectin-1 and IL-17 assays had sensitivities of 39.4%, 62.5%, 69.7% and 78.8%, respectively, and specificities of 89.2%, 91.5%, 72.9% and 71.9%, respectively. The sensitivity of Dectin-1 and IL-17 in plasma was higher than that in plasma and BALF GM. while the specificity is lower than that of plasma and BALF GM. The diagnostic sensitivity and specificity of plasma GM combined with IL-17 for IPA in bronchiectasis were greater than 80%. The combination of plasma GM and IL-17 can improve the sensitivity of the GM test, but does not reduce the diagnostic specificity. The plasma Dectin-1 and IL-17 showed positive linear correlations with the bronchiectasis severity Index (BSI) score in linear regression. Conclusions Plasma Dectin-1 and IL-17 levels were significantly higher in bronchiectasis patients with IPA. The sensitivity of Dectin-1 and IL-17 was superior to that of GM for the diagnosis of IPA in patients with bronchiectasis. The combination of GM and IL-17 in plasma is helpful for the diagnosis of IPA in bronchiectasis patients who cannot tolerate invasive procedures.
Collapse
|
5
|
Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Ibarra-Sánchez A, González-Espinosa C, Pérez-Tapia SM, Flores-Borja F, Estrada-Parra S, Chávez-Blanco AD, Chacón-Salinas R. Valproic acid restricts mast cell activation by Listeria monocytogenes. Sci Rep 2022; 12:15685. [PMID: 36127495 PMCID: PMC9489790 DOI: 10.1038/s41598-022-20054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Fabián Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando No. 22. Col. Sección XVI, C.P. 14080, México City, México.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
6
|
Lin X, Wang Y, Liu Z, Lin S, Tan J, He J, Hu F, Wu X, Ghosh S, Chen M, Liu F, Mao R. Intestinal strictures in Crohn's disease: a 2021 update. Therap Adv Gastroenterol 2022; 15:17562848221104951. [PMID: 35757383 PMCID: PMC9218441 DOI: 10.1177/17562848221104951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Intestinal strictures remain one of the most intractable and common complications of Crohn's disease (CD). Approximately 70% of CD patients will develop fibrotic strictures after 10 years of CD diagnosis. Since specific antifibrotic therapies are unavailable, endoscopic balloon dilation and surgery remain the mainstay treatments despite a high recurrence rate. Besides, there are no reliable methods for accurately evaluating intestinal fibrosis. This is largely due to the fact that the mechanisms of initiation and propagation of intestinal fibrosis are poorly understood. There is growing evidence implying that the pathogenesis of stricturing CD involves the intricate interplay of factors including aberrant immune and nonimmune responses, host-microbiome dysbiosis, and genetic susceptibility. Currently, the progress on intestinal strictures has been fueled by the advent of novel techniques, such as single-cell sequencing, multi-omics, and artificial intelligence. Here, we perform a timely and comprehensive review of the substantial advances in intestinal strictures in 2021, aiming to provide prompt information regarding fibrosis and set the stage for the improvement of diagnosis, treatment, and prognosis of intestinal strictures.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zishan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sinan Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinyu Tan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinshen He
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Wu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Subrata Ghosh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, People’s Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, People’s Republic of China
- Department of Gastroenterology, Huidong People’s Hospital, Huizhou 516399, China
| |
Collapse
|
7
|
Mahalingam SS, Jayaraman S, Pandiyan P. Fungal Colonization and Infections-Interactions with Other Human Diseases. Pathogens 2022; 11:212. [PMID: 35215155 PMCID: PMC8875122 DOI: 10.3390/pathogens11020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi influence at least several diseases, in part by mechanisms such as the production of pro-carcinogenic agents, molecular mimicking, and triggering of the inflammation cascade. These processes impact the interactions among human pathogenic and resident fungi, the bacteriome in various organs/tissues, and the host immune system, dictating the outcomes of invasive infections, metabolic diseases, and cancer. Although mechanistic investigations are at stages of infancy, recent studies have advanced our understanding of host-fungal interactions, their role in immune homeostasis, and their associated pathologies. This review summarizes the role of C. albicans and other opportunistic fungi, specifically their association with various diseases, providing a glimpse at the recent developments and our current knowledge in the context of inflammatory-bowel disease (IBD), cancers, and COVID-19. Two of the most common human diseases where fungal interactions have been previously well-studied are cancer and IBD. Here we also discuss the emerging role of fungi in the ongoing and evolving pandemic of COVID-19, as it is relevant to current health affairs.
Collapse
Affiliation(s)
- Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Do Mast Cells Contribute to the Antifungal Host Defense? Cells 2021; 10:cells10102510. [PMID: 34685489 PMCID: PMC8534142 DOI: 10.3390/cells10102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The fungal kingdom includes a group of microorganisms that are widely distributed in the environment, and therefore the exposure to them is almost constant. Furthermore, fungal components of the microbiome, i.e., mycobiome, could serve as a reservoir of potentially opportunistic pathogens. Despite close encounters with fungi, defense mechanisms that develop during fungal infections remain unexplored. The strategic location of mast cells (MCs) close to the external environment places them among the first cells to encounter pathogens along with the other innate immune cells. MCs are directly involved in the host defense through the ability to destroy pathogens or indirectly by activating other immune cells. Most available data present MCs’ involvement in antibacterial, antiviral, or antiparasitic defense mechanisms. However, less is known about their contribution in defense mechanisms against fungi. MCs may support immune responses to fungi or their specific molecules through initiated degranulation, synthesis and release of cytokines, chemokines, mediators, and generation of reactive oxygen species (ROS), as well as immune cells’ recruitment, phagocytosis, or provision of extracellular DNA traps. This review summarizes current knowledge on host defense mechanisms against fungi and MCs’ involvement in those processes. It also describes the effects of fungi or fungus-derived constituents on MCs’ activity.
Collapse
|