1
|
Zhu LL, Wang YH, Feng JH, Zhou Q. Oral Bacterial Lysate OM-85: Advances in Pharmacology and Therapeutics. Drug Des Devel Ther 2024; 18:4387-4399. [PMID: 39372675 PMCID: PMC11453140 DOI: 10.2147/dddt.s484897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Background Bacterial lysates are known for having immunomodulatory properties and have been used mainly for the prevention and treatment of respiratory tract infections (RTIs). However, rigorous studies are needed to confirm the clinical efficacy of bacterial lysates with various bacterial antigen components, preparation methods, administration routes and course of treatment. OM-85, an oral standardized lysate prepared by alkaline lysis of 21 strains from 8 species of common respiratory tract pathogens, is indicated as immunotherapy for prevention of recurrent RTIs and acute infectious exacerbations of chronic bronchitis. OM-85 acts on multiple innate and adaptive immune targets and can restore type 1 helper T (Th1)/Th2 balance. Sporadic studies have shown advances in pharmacology and therapeutics of OM-85, and thus an update review is necessary. Methods Literature was retrieved by searching PubMed, Web of science, Embase, CNKI, and Full Text Database of Chinese Medical Journals. Results New roles of OM-85 were discovered in prevention and treatment of lung cancer, pulmonary tuberculosis, SARS-CoV-2 infection, allergic rhinitis, pulmonary fibrosis, atopic dermatitis, and nephrotic syndrome. Pharmacoeconomic values of OM-85 were demonstrated in prophylaxis and treatment of RTIs, chronic obstructive pulmonary disease, asthma, chronic bronchitis, rhinosinusitis and allergic rhinitis. Two consecutive courses of OM-85 (6 or 12 months apart) could prevent recurrent RTIs in children. Maternal OM-85 treatment could offer benefits for offspring. Product-specific response was observed. The efficacy of OM-85 may be associated with patient's characteristics (eg, severity of the disease, age, immune response pattern, malignancy risk stratification). Conclusion OM-85 can improve effectiveness of standard care for some primary diseases, and carry significant pharmacoeconomic implications. The benefits shown by OM-85 in vitro and in vivo, when extrapolated to humans, are exciting but also require caution. Individualized treatment may need to be considered. It is necessary to compare the efficacy and safety of various bacterial lysate preparations.
Collapse
Affiliation(s)
- Ling-ling Zhu
- VIP Geriatric Ward, Division of Nursing, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yan-hong Wang
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian-hua Feng
- Department of Pediatrics, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
2
|
Scott N, Martinovich KM, Granland CM, Seppanen EJ, Tjiam MC, de Gier C, Foo E, Short KR, Chew KY, Fulurija A, Strickland DH, Richmond PC, Kirkham LAS. Nasal Delivery of Haemophilus haemolyticus Is Safe, Reduces Influenza Severity, and Prevents Development of Otitis Media in Mice. J Infect Dis 2024; 230:346-356. [PMID: 38470272 DOI: 10.1093/infdis/jiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Despite vaccination, influenza and otitis media (OM) remain leading causes of illness. We previously found that the human respiratory commensal Haemophilus haemolyticus prevents bacterial infection in vitro and that the related murine commensal Muribacter muris delays OM development in mice. The observation that M muris pretreatment reduced lung influenza titer and inflammation suggests that these bacteria could be exploited for protection against influenza/OM. METHODS Safety and efficacy of intranasal H haemolyticus at 5 × 107 colony-forming units (CFU) was tested in female BALB/cARC mice using an influenza model and influenza-driven nontypeable Haemophilus influenzae (NTHi) OM model. Weight, symptoms, viral/bacterial levels, and immune responses were measured. RESULTS Intranasal delivery of H haemolyticus was safe and reduced severity of influenza, with quicker recovery, reduced inflammation, and lower lung influenza virus titers (up to 8-fold decrease vs placebo; P ≤ .01). Haemophilus haemolyticus reduced NTHi colonization density (day 5 median NTHi CFU/mL = 1.79 × 103 in treatment group vs 4.04 × 104 in placebo, P = .041; day 7 median NTHi CFU/mL = 28.18 vs 1.03 × 104; P = .028) and prevented OM (17% OM in treatment group, 83% in placebo group; P = .015). CONCLUSIONS Haemophilus haemolyticus has potential as a live biotherapeutic for prevention or early treatment of influenza and influenza-driven NTHi OM. Additional studies will deem whether these findings translate to humans and other respiratory infections.
Collapse
Affiliation(s)
- Naomi Scott
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Kelly M Martinovich
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Caitlyn M Granland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Elke J Seppanen
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - M Christian Tjiam
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Camilla de Gier
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Edison Foo
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane
| | - Alma Fulurija
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Deborah H Strickland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Department of Paediatrics, School of Medicine, University of Western Australia, Perth, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| |
Collapse
|
3
|
Jones AC, Leffler J, Laing IA, Bizzintino J, Khoo SK, LeSouef PN, Sly PD, Holt PG, Strickland DH, Bosco A. LPS binding protein and activation signatures are upregulated during asthma exacerbations in children. Respir Res 2023; 24:184. [PMID: 37438758 DOI: 10.1186/s12931-023-02478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children (n = 19) during acute virus-associated exacerbations and later during convalescence. Systems level analyses were employed to identify coexpression networks and infer the drivers of these networks, and validation was subsequently obtained via independent samples from asthmatic children. During exacerbations, PBMC exhibited significant changes in immune cell abundance and upregulation of complex interlinked networks of coexpressed genes. These were associated with priming of innate immunity, inflammatory and remodelling functions. We identified activation signatures downstream of bacterial LPS, glucocorticoids and TGFB1. We also confirmed that LPS binding protein was upregulated at the protein-level in plasma. Multiple gene networks known to be involved positively or negatively in asthma pathogenesis, are upregulated in circulating PBMC during acute exacerbations, supporting the hypothesis that systemic pre-programming of potentially pathogenic as well as protective functions of circulating immune cells preceeds migration into the airways. Enhanced sensitivity to LPS is likely to modulate the severity of acute asthma exacerbations through exposure to environmental LPS.
Collapse
Affiliation(s)
- Anya C Jones
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Jonatan Leffler
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid A Laing
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Joelene Bizzintino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Siew-Kim Khoo
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Peter N LeSouef
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Anthony Bosco
- Asthma & Airway Disease Research Center, The BIO5 Institute, The University of Arizona, Rm. 329, 1657 E. Helen Street, Tucson, AZ, 85721, USA.
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
4
|
Bosco A. Emerging role for interferons in respiratory viral infections and childhood asthma. Front Immunol 2023; 14:1109001. [PMID: 36895568 PMCID: PMC9989033 DOI: 10.3389/fimmu.2023.1109001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) and Rhinovirus (RV) infections are major triggers of severe lower respiratory illnesses (sLRI) in infants and children and are strongly associated with the subsequent development of asthma. Decades of research has focused on the role of type I interferons in antiviral immunity and ensuing airway diseases, however, recent findings have highlighted several novel aspects of the interferon response that merit further investigation. In this perspective, we discuss emerging roles of type I interferons in the pathogenesis of sLRI in children. We propose that variations in interferon response patterns exist as discrete endotypes, which operate locally in the airways and systemically through a lung-blood-bone marrow axis. We discuss new insights into the role of interferons in immune training, bacterial lysate immunotherapy, and allergen-specific immunotherapy. Interferons play complex and diverse roles in the pathogenesis of sLRI and later asthma, providing new directions for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
5
|
Antunes KH, Cassão G, Santos LD, Borges SG, Poppe J, Gonçalves JB, Nunes EDS, Recacho GF, Sousa VB, Da Silva GS, Mansur D, Stein RT, Pasquali C, De Souza APD. Airway Administration of Bacterial Lysate OM-85 Protects Mice Against Respiratory Syncytial Virus Infection. Front Immunol 2022; 13:867022. [PMID: 35603159 PMCID: PMC9118194 DOI: 10.3389/fimmu.2022.867022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a seasonal pathogen responsible for the highest percentage of viral bronchiolitis in pediatric patients. There are currently no vaccine available and therapeutic methods to mitigate the severity of RSV bronchiolitis are limited. OM-85, an oral standardized bacterial lysate isolated from human respiratory strains and widely used to prevent recurrent infections and/or exacerbations in populations at risk, has been shown to be effective and safe in children and adults. Here, we demonstrate that airway administration of OM-85 in Balb/c mice prior to infection prevents RSV-induced disease, resulting in inhibition of viral replication associated with less perivascular and peribronchial inflammation in the lungs. These protective effects are dose and time-dependent with complete protection using 1mg dose of OM-85 only four times intranasally. Mechanistic insights using this topical route in the airways revealed increased alveolar macrophages, a selective set of tolerogenic DCs, Treg and Th1 expansion in the lung, even in the absence of infection, contributing to a better Th1/Th2 balance and preventing ILC2 recruitment in the airways and associated inflammatory sequelae. OM-85 preventive treatment also improved antiviral response by increasing IFNβ and its responsive genes in the lung. In vitro, OM-85 protects against RSV infection in a type I interferon pathway. Our animal model data suggest that intranasal use of OM-85 should be considered as a potential prophylactic product to prevent RSV bronchiolitis once human studies confirm these findings.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gisele Cassão
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Duarte Santos
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sofia Giacomet Borges
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Juliana Poppe
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Budelon Gonçalves
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduarda da Silva Nunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Guilherme Fernando Recacho
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Vitória Barbosa Sousa
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriela Souza Da Silva
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Daniel Mansur
- Laboratory of Imunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Renato T Stein
- Department of Pediatrics, São Lucas Hospital PUCRS, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Ana Paula Duarte De Souza
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|