1
|
Zhu L, Liang F, Han X, Ye B, Xue L. Machine Learning-Based Glycolipid Metabolism Gene Signature Predicts Prognosis and Immune Landscape in Oesophageal Squamous Cell Carcinoma. J Cell Mol Med 2025; 29:e70434. [PMID: 40119618 PMCID: PMC11928743 DOI: 10.1111/jcmm.70434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/24/2025] Open
Abstract
Using machine learning approaches, we developed and validated a novel prognostic model for oesophageal squamous cell carcinoma (ESCC) based on glycolipid metabolism-related genes. Through integrated analysis of TCGA and GEO datasets, we established a robust 15-gene signature that effectively stratified patients into distinct risk groups. This signature demonstrated superior prognostic value and revealed significant associations with immune infiltration patterns. High-risk patients exhibited reduced immune cell infiltration, particularly in B cells and NK cells, alongside increased tumour purity. Single-cell RNA sequencing analysis uncovered unique cellular composition patterns and enhanced interaction intensities in the high-risk group, especially within epithelial and smooth muscle cells. Functional validation confirmed MECP2 as a promising therapeutic target, with its knockdown significantly inhibiting tumour progression both in vitro and in vivo. Drug sensitivity analysis identified specific therapeutic agents showing potential efficacy for high-risk patients. Our study provides both a practical prognostic tool and novel insights into the relationship between glycolipid metabolism and tumour immunity in ESCC, offering potential strategies for personalised treatment.
Collapse
Affiliation(s)
- Lin Zhu
- Department of OncologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Feng Liang
- Department of Gastroenterology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Xue Han
- Department of Gastroenterology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Bin Ye
- Department of Gastroenterology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Lei Xue
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Wang Y, Xu W, Zhang J, Liu J, Wang Z, Liu Y, Mai K, Ai Q. Effects of Glycyrrhizin (GL) Supplementation on Survival, Growth Performance, Expression of Feeding-Related Genes, Activities of Digestive Enzymes, Antioxidant Capacity, and Expression of Inflammatory Factors in Large Yellow Croaker ( Larimichthys crocea) Larvae. AQUACULTURE NUTRITION 2022; 2022:5508120. [PMID: 36860459 PMCID: PMC9973149 DOI: 10.1155/2022/5508120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
A 30-day feeding trial was conducted to determine the effects of dietary glycyrrhizin (GL) on survival, growth performance, expression of feeding-related genes, activities of digestive enzymes, antioxidant capacity, and expression of inflammatory factors of large yellow croaker larvae with an initial weight of 3.78 ± 0.27 mg. Four 53.80% crude protein and 16.40% crude lipid diets were formulated with supplementation of 0%, 0.005%, 0.01%, and 0.02% GL, respectively. Results indicated that larvae fed diets with GL had higher survival rate and specific growth rate than the control (P < 0.05). Compared with the control, the mRNA expression of orexigenic factor genes including neuropeptide Y (npy) and agouti-related protein (agrp) were significantly increased in larvae fed the diet with 0.005% GL, while the mRNA expression of anorexigenic factor genes including thyrotropin-releasing hormone (trh), cocaine and amphetamine regulated transcript (cart), and leptin receptor (lepr) were significantly decreased in larvae fed the diet with 0.005% GL (P < 0.05). The trypsin activity in larvae fed the diet with 0.005% GL was significantly higher than the control (P < 0.05). The alkaline phosphatase (AKP) activity in larvae fed the diet with 0.01% GL was significantly higher than the control (P < 0.05). A clear increase of total glutathione (T-GSH) content, activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) was observed in larvae fed the diet with 0.01% GL compared with the control (P < 0.05). Moreover, the mRNA expression of interleukin-1β (il-1β) and interleukin-6 (il-6) (proinflammatory genes) in larvae fed the diet with 0.02% GL were significantly lower than the control (P < 0.05). In conclusion, the supplementation of 0.005% -0.01% GL could enhance the expression of orexigenic factor genes, activities of digestive enzymes and antioxidant capacity, ultimately improving the survival, and growth performance of large yellow croaker larvae.
Collapse
Affiliation(s)
- Yuntao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jianmin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jiahui Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Du J, Zhang J, Xiang X, Xu D, Cui K, Mai K, Ai Q. Activation of farnesoid X receptor suppresses ER stress and inflammation via the YY1/NCK1/PERK pathway in large yellow croaker ( Larimichthys crocea). Front Nutr 2022; 9:1024631. [PMID: 36505250 PMCID: PMC9731767 DOI: 10.3389/fnut.2022.1024631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Unfolded protein responses from endoplasmic reticulum (ER) stress have been implicated in inflammatory signaling. The vicious cycle of ER stress and inflammation makes regulation even more difficult. This study examined effects of farnesoid X receptor (FXR) in ER-stress regulation in large yellow croakers. The soybean-oil-diet-induced expression of ER stress markers was decreased in fish with FXR activated. In croaker macrophages, FXR activation or overexpression significantly reduced inflammation and ER stress caused by tunicamycin (TM), which was exacerbated by FXR knockdown. Further investigation showed that the TM-induced phosphorylation of PERK and EIF2α was inhibited by the overexpression of croaker FXR, and it was increased by FXR knockdown. Croaker NCK1 was then confirmed to be a regulator of PERK, and its expression in macrophages is increased by FXR overexpression and decreased by FXR knockdown. The promoter activity of croaker NCK1 was inhibited by yin-yang 1 (YY1). Furthermore, the results show that croaker FXR overexpression could suppress the P65-induced promoter activity of YY1 in HEK293t cells and decrease the TM-induced expression of yy1 in macrophages. These results indicate that FXR could suppress P65-induced yy1 expression and then increase NCK1 expression, thereby inhibiting the PERK pathway. This study may benefit the understanding of ER stress regulation in fish, demonstrating that FXR can be used in large yellow croakers as an effective target for regulating ER stress and inflammation.
Collapse
Affiliation(s)
- Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Junzhi Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Qinghui Ai
| |
Collapse
|
4
|
Docosahexaenoic Acid Alleviates Palmitic Acid-Induced Inflammation of Macrophages via TLR22-MAPK-PPARγ/Nrf2 Pathway in Large Yellow Croaker (Larimichthys crocea). Antioxidants (Basel) 2022; 11:antiox11040682. [PMID: 35453367 PMCID: PMC9032456 DOI: 10.3390/antiox11040682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid (SFA) that can cause an inflammatory response, while docosahexaenoic acid (DHA) is always used as a nutritional modulator due to its anti-inflammatory properties. However, the potential molecular mechanism is still not completely elucidated in fish. Herein, the PA treatment induced an inflammatory response in macrophages of large yellow croaker (Larimichthys crocea). Meanwhile, the mRNA expression of Toll-like receptor (TLR)-related genes, especially tlr22, and the phosphorylation of the mitogen-activated protein kinase (MAPK) pathway were significantly upregulated by PA. Further investigation found that the PA-induced inflammatory response was suppressed by tlr22 knockdown and MAPK inhibitors. Moreover, the results of the peroxisome proliferator-activated receptor γ (PPARγ) agonist and inhibitor treatment proved that PPARγ was involved in the PA-induced inflammation. PA treatment decreased the protein expression of PPARγ, while tlr22 knockdown and MAPK inhibitors recovered the decreased expression. Besides, the PA-induced activation of Nrf2 was regulated by p38 MAPK. Furthermore, DHA-executed anti-inflammatory effects by regulating the phosphorylation of the MAPK pathway and expressions of PPARγ and Nrf2. Overall, the present study revealed that DHA alleviated PA-induced inflammation in macrophages via the TLR22-MAPK-PPARγ/Nrf2 pathway. These results could advance the understanding of the molecular mechanism of the SFA-induced inflammatory response and provide nutritional mitigative strategies.
Collapse
|
5
|
Du J, Xiang X, Xu D, Cui K, Pang Y, Xu W, Mai K, Ai Q. LPS Stimulation Induces Small Heterodimer Partner Expression Through the AMPK-NRF2 Pathway in Large Yellow Croaker ( Larimichthys crocea). Front Immunol 2021; 12:753681. [PMID: 34819934 PMCID: PMC8607525 DOI: 10.3389/fimmu.2021.753681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The mall heterodimer partner (SHP) plays an important regulatory role in mammal inflammation. The main objective of this study was to investigate the response of SHP to inflammatory stimulation and its underlying mechanism. The shp gene from large yellow croakers, was cloned, and this gene is mainly expressed in the liver and intestine. Lipopolysaccharide (LPS) stimulation induced the mRNA expression and protein level of SHP in macrophages of large yellow croakers. Overexpression of SHP significantly decreased mRNA expression of tnfα, il-1β, il-6 and cox2 induced by LPS treatment in macrophages. LPS stimulation increased the phosphorylation level of Adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) in macrophages. AMPK inhibitor treatment significantly decreased the expression of SHP induced by LPS while AMPK activator significantly increased the expression of SHP. The nuclear factor-erythroid 2-related factor 2 (NRF2) increased the promoter activity of SHP in large yellow croakers and the level of nuclear NRF2 was increased by LPS stimulation and AMPK activation. NRF2 inhibitor treatment significantly decreased mRNA expression of shp induced by LPS and AMPK activator. In conclusion, LPS can induce SHP expression by activating the AMPK-NRF2 pathway while SHP could negatively regulate LPS-induced inflammation in large yellow croakers. This study may be benefit to the development of immunology of marine fish and provide new ideas for inflammation-related diseases.
Collapse
Affiliation(s)
- Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yuning Pang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|