3
|
Arellano G, Loda E, Chen Y, Neef T, Cogswell AC, Primer G, Joy G, Kaschke K, Wills S, Podojil JR, Popko B, Balabanov R, Miller SD. Interferon-γ controls aquaporin 4-specific Th17 and B cells in neuromyelitis optica spectrum disorder. Brain 2024; 147:1344-1361. [PMID: 37931066 PMCID: PMC10994540 DOI: 10.1093/brain/awad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a CNS autoimmune inflammatory disease mediated by T helper 17 (Th17) and antibody responses to the water channel protein, aquaporin 4 (AQP4), and associated with astrocytopathy, demyelination and axonal loss. Knowledge about disease pathogenesis is limited and the search for new therapies impeded by the absence of a reliable animal model. In our work, we determined that NMOSD is characterized by decreased IFN-γ receptor signalling and that IFN-γ depletion in AQP4201-220-immunized C57BL/6 mice results in severe clinical disease resembling human NMOSD. Pathologically, the disease causes autoimmune astrocytic and CNS injury secondary to cellular and humoral inflammation. Immunologically, the absence of IFN-γ allows for increased expression of IL-6 in B cells and activation of Th17 cells, and generation of a robust autoimmune inflammatory response. Consistent with NMOSD, the experimental disease is exacerbated by administration of IFN-β, whereas repletion of IFN-γ, as well as therapeutic targeting of IL-17A, IL-6R and B cells, ameliorates it. We also demonstrate that immune tolerization with AQP4201-220-coupled poly(lactic-co-glycolic acid) nanoparticles could both prevent and effectively treat the disease. Our findings enhance the understanding of NMOSD pathogenesis and provide a platform for the development of immune tolerance-based therapies, avoiding the limitations of the current immunosuppressive therapies.
Collapse
Affiliation(s)
- Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eileah Loda
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yanan Chen
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Tobias Neef
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew C Cogswell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Grant Primer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Godwin Joy
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin Kaschke
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Samantha Wills
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL 60077, USA
| | - Brian Popko
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Roumen Balabanov
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
6
|
De Biasi S, Mattioli M, Meschiari M, Lo Tartaro D, Paolini A, Borella R, Neroni A, Fidanza L, Busani S, Girardis M, Coppi F, Mattioli AV, Guaraldi G, Mussini C, Cossarizza A, Gibellini L. Prognostic immune markers identifying patients with severe COVID-19 who respond to tocilizumab. Front Immunol 2023; 14:1123807. [PMID: 37215114 PMCID: PMC10196248 DOI: 10.3389/fimmu.2023.1123807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction A growing number of evidences suggest that the combination of hyperinflammation, dysregulated T and B cell response and cytokine storm play a major role in the immunopathogenesis of severe COVID-19. IL-6 is one of the main pro-inflammatory cytokines and its levels are increased during SARS-CoV-2 infection. Several observational and randomized studies demonstrated that tocilizumab, an IL-6R blocker, improves survival in critically ill patients both in infectious disease and intensive care units. However, despite transforming the treatment options for COVID-19, IL-6R inhibition is still ineffective in a fraction of patients. Methods In the present study, we investigated the impact of two doses of tocilizumab in patients with severe COVID-19 who responded or not to the treatment by analyzing a panel of cytokines, chemokines and other soluble factors, along with the composition of peripheral immune cells, paying a particular attention to T and B lymphocytes. Results We observed that, in comparison with non-responders, those who responded to tocilizumab had different levels of several cytokines and different T and B cells proportions before starting therapy. Moreover, in these patients, tocilizumab was further able to modify the landscape of the aforementioned soluble molecules and cellular markers. Conclusions We found that tocilizumab has pleiotropic effects and that clinical response to this drug remain heterogenous. Our data suggest that it is possible to identify patients who will respond to treatment and that the administration of tocilizumab is able to restore the immune balance through the re-establishment of different cell populations affected by SARS-COV-2 infection, highlighting the importance of temporal examination of the pathological features from the diagnosis.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Stefano Busani
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Coppi
- Department of Metabolic Sciences and Neurosciences, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Vittoria Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| |
Collapse
|
9
|
Murata H, Kinoshita M, Yasumizu Y, Motooka D, Beppu S, Shiraishi N, Sugiyama Y, Kihara K, Tada S, Koda T, Konaka H, Takamatsu H, Kumanogoh A, Okuno T, Mochizuki H. Cell-Free DNA Derived From Neutrophils Triggers Type 1 Interferon Signature in Neuromyelitis Optica Spectrum Disorder. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/3/e1149. [PMID: 35210295 PMCID: PMC8874356 DOI: 10.1212/nxi.0000000000001149] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Background and Objectives Recently accumulating evidence suggests the pivotal role of type 1 interferon (IFN-1) signature in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD). However, the mechanism of the initial trigger that augments IFN-1 pathway in the peripheral immune system of NMOSD has yet to be elucidated. Methods Clinical samples were obtained from 32 patients with aquaporin-4 antibody–positive NMOSD and 23 healthy subjects. IFN-1 induction in peripheral blood mononuclear cells (PBMCs) by serum-derived cell-free DNA (cfDNA) was assessed in combination with blockades of DNA sensors in vitro. CfDNA fraction was analyzed for DNA methylation profiles by bisulfite sequencing, elucidating the cellular origin of cfDNA. The induction of neutrophil extracellular trap related cell death (NETosis) was further analyzed in NMOSD and control groups, and the efficacy of pharmacologic intervention of NETosis was assessed. Results Enhanced IFN-1 induction by cfDNA derived from NMOSD was observed in PBMCs with cofactor of LL37 antimicrobial peptide. DNase treatment, cGAS inhibitor, and Toll-like receptor 9 antagonist efficiently inhibited IFN-1 production. DNA methylation pattern of cfDNA in patients with NMOSD demonstrated that the predominant cellular source of cfDNA was neutrophils. Whole blood transcriptome analysis also revealed neutrophil activation in NMOSD. In addition, enhanced NETosis induction was observed with NMOSD-derived sera, and efficient pharmacologic inhibition of NETosis with dipyridamole was observed. Discussion Our study highlights the previously unrevealed role of cfDNA predominantly released by neutrophil in the induction of IFN-1 signature in NMOSD and further indicate a novel pharmacologic target in NMOSD.
Collapse
Affiliation(s)
- Hisashi Murata
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Kinoshita
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yoshiaki Yasumizu
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisuke Motooka
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shohei Beppu
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoyuki Shiraishi
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuko Sugiyama
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keigo Kihara
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoru Tada
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toru Koda
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hachiro Konaka
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hyota Takamatsu
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsusada Okuno
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideki Mochizuki
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|