1
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Li B, Zhang C, Xu X, Shen Q, Luo S, Hu J. Manipulating the cGAS-STING Axis: advancing innovative strategies for osteosarcoma therapeutics. Front Immunol 2025; 16:1539396. [PMID: 39991153 PMCID: PMC11842356 DOI: 10.3389/fimmu.2025.1539396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
This paper explored the novel approach of targeting the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway for the treatment of osteosarcoma (OS). Osteosarcoma is a common malignancy in adolescents. Most patients die from lung metastasis. It reviewed the epidemiology and pathological characteristics of OS, highlighting its highly malignant nature and tendency for pulmonary metastasis, underscoring the importance of identifying new therapeutic targets. The cGAS-STING pathway was closely associated with the malignant biological behaviors of OS cells, suggesting that targeting this pathway could be a promising therapeutic strategy. Currently, research on the role of the cGAS-STING pathway in OS treatment has been limited, and the underlying mechanisms remain unclear. Therefore, further investigation into the mechanisms of the cGAS-STING pathway in OS and the exploration of therapeutic strategies based on this pathway are of great significance for developing more effective treatments for OS. This paper offered a fresh perspective on the treatment of OS, providing hope for new therapeutic options for OS patients by targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- BingBing Li
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Cheng Zhang
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - XiaoJuan Xu
- Department of Pediatrics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - QiQin Shen
- Department of Orthopedics, Shaoxing Central Hospital, The Central Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - ShuNan Luo
- Department of Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - JunFeng Hu
- Department of Pain, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Gu X, Chen Y, Cao K, Tu M, Liu W, Ju J. Therapeutic landscape in systemic lupus erythematosus: mtDNA activation of the cGAS-STING pathway. Int Immunopharmacol 2024; 133:112114. [PMID: 38652968 DOI: 10.1016/j.intimp.2024.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Mitochondrial DNA (mtDNA) serves as a pivotal immune stimulus in the immune response. During stress, mitochondria release mtDNA into the cytoplasm, where it is recognized by the cytoplasmic DNA receptor cGAS. This activation initiates the cGAS-STING-IRF3 pathway, culminating in an inflammatory response. The cGAS-STING pathway has emerged as a critical mediator of inflammatory responses in microbial infections, stress, autoimmune diseases, chronic illnesses, and tissue injuries. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by connective tissue involvement across various bodily systems. Its hallmark is the production of numerous autoantibodies, which prompt the immune system to target and damage the body's own tissues, resulting in organ and tissue damage. Increasing evidence implicates the cGAS-STING pathway as a significant contributor to SLE pathogenesis. This article aims to explore the role of the mtDNA-triggered cGAS-STING pathway and its mechanisms in SLE, with the goal of providing novel insights for clinical interventions.
Collapse
Affiliation(s)
- Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Gong J, Gao X, Ge S, Li H, Wang R, Zhao L. The Role of cGAS-STING Signalling in Metabolic Diseases: from Signalling Networks to Targeted Intervention. Int J Biol Sci 2024; 20:152-174. [PMID: 38164186 PMCID: PMC10750282 DOI: 10.7150/ijbs.84890] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) is a crucial innate defence mechanism against viral infection in the innate immune system, as it principally induces the production of type I interferons. Immune responses and metabolic control are inextricably linked, and chronic low-grade inflammation promotes the development of metabolic diseases. The cGAS-STING pathway activated by double-stranded DNA (dsDNA), cyclic dinucleotides (CDNs), endoplasmic reticulum stress (ER stress), mitochondrial stress, and energy imbalance in metabolic cells and immune cells triggers proinflammatory responses and metabolic disorders. Abnormal overactivation of the pathway is closely associated with metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), insulin resistance and cardiovascular diseases (CVDs). The interaction of cGAS-STING with other pathways, such as the nuclear factor-kappa B (NF-κB), Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), autophagy, pyroptosis and insulin signalling pathways, is considered an important mechanism by which cGAS-STING regulates inflammation and metabolism. This review focuses on the link between immune responses related to the cGAS-STING pathway and metabolic diseases and cGAS-STING interaction with other pathways for mediating signal input and affecting output. Moreover, potential inhibitors of the cGAS-STING pathway and therapeutic prospects against metabolic diseases are discussed. This review provides a comprehensive perspective on the involvement of STING in immune-related metabolic diseases.
Collapse
Affiliation(s)
- Jiahui Gong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xilong Gao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Hongliang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011517, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Research Center for Probiotics, China Agricultural University, Sanhe 065200, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
5
|
Wang X, Liao H, Liu Y, Kang Y, Tu Q, Li Z, Kang Y, Sheng P, Zhang Z. Aspirin reverses inflammatory suppression of chondrogenesis by stabilizing YAP. Cell Prolif 2022; 56:e13380. [PMID: 36495056 PMCID: PMC10068956 DOI: 10.1111/cpr.13380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) transplantation methods are promising candidates for osteoarthritis (OA) treatment. However, inflammatory factors (such as TNF-α) that occur at cell transplantation sites are critical factors that impair the effectiveness of the treatment. Previous studies have shown that aspirin (AS) had a regulatory role in stem cell differentiation. However, little is known about the role of AS on the chondrogenesis of BMMSCs. The purpose of this study is to explore the protective role of AS against the negative effects of TNF-α on BMMSC chondrogenesis. In this study, we investigated the effects of AS and TNF-α on BMMSCs chondrogenesis by performing the Alcian Blue staining, safranin O-fast green staining, haematoxylin and eosin staining, and immunohistochemical staining, as well as real-time RT-PCR and western blot assays. Our results demonstrated that TNF-α inhibited chondrogenic differentiation of BMMSCs by disrupting the balance of cartilage metabolism and promoting oxidative stress in BMMSCs, while AS treatment attenuated these effects. Furthermore, a detailed molecular mechanistic analysis indicated that Yes-associated protein (YAP) played a critical regulatory role in this process. In addition, AS treatment mitigated the progression of cartilage degeneration in a mouse destabilization of the medial meniscus (DMM) model. AS alleviated the inhibitory effect of TNF-α on chondrogenesis of BMMSCs by stabilizing YAP, which may provide new therapeutic strategies for OA treatment.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Hongyi Liao
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Yong Liu
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Yunze Kang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Qingqiang Tu
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Zhiwen Li
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Yan Kang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Puyi Sheng
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| | - Ziji Zhang
- Department of Orthopedics the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology the First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
6
|
Liu J, Rui K, Peng N, Luo H, Zhu B, Zuo X, Lu L, Chen J, Tian J. The cGAS-STING pathway: Post-translational modifications and functional implications in diseases. Cytokine Growth Factor Rev 2022; 68:69-80. [PMID: 36151014 DOI: 10.1016/j.cytogfr.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/30/2023]
Abstract
Recent studies have illustrated the functional significance of DNA recognition in the activation of innate immune responses among a variety of diseases. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has been found to be modulated by post-translational modifications and can regulate the immune response via type I IFNs. Accumulating evidence indicates a pivotal role of cGAS-STING signaling, being protective or pathogenic, in the development of diseases. Thus, a comprehensive understanding of the post-translational modifications of cGAS-STING pathway and their role in disease development will provide insights in predicting individual disease outcomes and developing appropriate therapies. In this review, we will discuss the regulation of the cGAS-STING pathway and its implications in disease pathologies, as well as pharmacologic strategies to target the cGAS-STING pathway for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Hui Luo
- Department of Rheumatology and immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoxia Zuo
- Department of Rheumatology and immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, China
| | - Jixiang Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|