1
|
Pashkina E, Blinova E, Bykova M, Aktanova A, Denisova V. Cell Therapy as a Way to Increase the Effectiveness of Hematopoietic Stem Cell Transplantation. Cells 2024; 13:2056. [PMID: 39768148 PMCID: PMC11675046 DOI: 10.3390/cells13242056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a standard method for treating a number of pathologies, primarily blood diseases. Timely restoration of the immune system after HSCT is a critical factor associated with the development of complications such as relapses or secondary tumors and various infections, as well as the graft-versus-host reaction in allogeneic transplantation, which ultimately affects the survival of patients. Introduction into the recipient's body of immune system cells that are incapable of sensitization by recipient antigens during the period of immune reconstitution can increase the rate of restoration of the immune system, as well as reduce the risk of complications. This review presents the results of studies on cell therapy with various cell subpopulations of both bone marrow and mesenchymal origin during HSCT.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Elena Blinova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Vera Denisova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| |
Collapse
|
2
|
Li Z, Zhao H, Li Z, He Y. Correlation analysis of laboratory indicators, genetic abnormalities and staging in patients with newly diagnosed multiple myeloma. Medicine (Baltimore) 2024; 103:e40710. [PMID: 39612380 PMCID: PMC11608745 DOI: 10.1097/md.0000000000040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
To explore the correlation between immune status, genetic profile, laboratory parameters, and staging in patients with newly diagnosed multiple myeloma (NDMM) and to investigate the clinical characteristics of these patients along with their associated risk factors. The clinical data of 135 patients with multiple myeloma (MM) admitted to the First Affiliated Hospital of Guangxi Medical University between March 2020 and December 2023 were retrospectively collected. These data were systematically organized to evaluate the staging status of patients, including the Durie-Salmon, International Staging System, Revised International Staging System, and mSMART 3.0 staging systems. Additionally, the study included analysis of peripheral blood T-lymphocyte subpopulations and Fluorescence In Situ Hybridization results. Laboratory indices were collected at the initial diagnosis of patients with MM prior to any treatment. These data were subsequently analyzed to ascertain their significance in staging patients with multiple myeloma. Among 135 patients with MM, N-terminal pro-brain natriuretic peptide (NT-proBNP) and lambda light chain (λ light chain) levels were higher in patients with abnormal kidney function (P < .05). NT-proBNP and λ light chain levels can predict abnormal renal function in patients with NDMM. The λ light chain levels were significantly higher in Zhuang patients than in Han patients (P < .05). Patients with high staging differed in total T cell percentages, CD8+ cell percentages, T cells, CD3+/CD4-/CD8- double-negative cell percentages, CD8+T cells, age, NT-proBNP, and M protein levels (P < .05). In addition, M protein levels and age were positively correlated with CD4+T cells and negatively correlated with CD8+T cells (P < .05). CD8+ T cells, age, NT-proBNP, M protein level, and cytogenetic abnormalities represent distinct aspects of immune status, tumor load, and cytogenetic status at the initial diagnosis of patients. These indices are closely associated with the clinical stage of patients and can be combined to assess the clinical stage of multiple myeloma patients after admission to the hospital. Additionally, NT-proBNP and λ light chain levels play a role in predicting abnormal renal function in patients with NDMM.
Collapse
Affiliation(s)
- Zhenrui Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Huihan Zhao
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongqing Li
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| |
Collapse
|
3
|
Bisht K, Merino A, Igarashi R, Gauthier L, Chiron M, Desjonqueres A, Smith E, Briercheck E, Romee R, Alici E, Vivier E, O'Dwyer M, van de Velde H. Natural killer cell biology and therapy in multiple myeloma: challenges and opportunities. Exp Hematol Oncol 2024; 13:114. [PMID: 39538354 PMCID: PMC11562869 DOI: 10.1186/s40164-024-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Despite therapeutic advancements, multiple myeloma (MM) remains incurable. NK cells have emerged as a promising option for the treatment of MM. NK cells are heterogenous and typically classified based on the relative expression of their surface markers (e.g., CD56 and CD16a). These cells elicit an antitumor response in the presence of low mutational burden and without neoantigen presentation via germline-encoded activating and inhibitory receptors that identify the markers of transformation present on the MM cells. Higher NK cell activity is associated with improved survival and prognosis, whereas lower activity is associated with advanced clinical stage and disease progression in MM. Moreover, not all NK cell phenotypes contribute equally toward the anti-MM effect; higher proportions of certain NK cell phenotypes result in better outcomes. In MM, the proportion, phenotype, and function of NK cells are drastically varied between different disease stages; this is further influenced by the bone marrow microenvironment, proportion of activating and inhibitory receptors on NK cells, expression of homing receptors, and bone marrow hypoxia. Antimyeloma therapies, such as autologous stem cell transplant, immunomodulation, proteasome inhibition, and checkpoint inhibition, further modulate the NK cell landscape in the patients. Thus, NK cells can naturally work in tandem with anti-MM therapies and be strategically modulated for improved anti-MM effect. This review article describes immunotypic and phenotypic differences in NK cells along with the functional changes in homeostatic and malignant states and provides expert insights on strategies to harness the potential of NK cells for improving outcomes in MM.
Collapse
Affiliation(s)
- Kamlesh Bisht
- Research and Development, Sanofi, Cambridge, MA, 02141, USA.
| | - Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis-Saint Paul, MN, USA
| | - Rob Igarashi
- Research and Development, Sanofi, Cambridge, MA, 02141, USA
| | - Laurent Gauthier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | | - Eric Smith
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Edward Briercheck
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rizwan Romee
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Evren Alici
- Department of Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, CNRS, INSERM, Marseille, France
- Marseille-Immunopôle, APHM, Hôpital de la Timone, Marseille, France
| | - Michael O'Dwyer
- Department of Haematology, University of Galway, Galway, Ireland
| | | |
Collapse
|
4
|
Blanquart E, Ekren R, Rigaud B, Joubert MV, Baylot V, Daunes H, Cuisinier M, Villard M, Carrié N, Mazzotti C, Lucca LE, Perrot A, Corre J, Walzer T, Avet-Loiseau H, Axisa PP, Martinet L. NK cells with adhesion defects and reduced cytotoxic functions are associated with a poor prognosis in multiple myeloma. Blood 2024; 144:1271-1283. [PMID: 38875515 DOI: 10.1182/blood.2023023529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients' clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM-associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.
Collapse
Affiliation(s)
- Eve Blanquart
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Bineta Rigaud
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Virginie Baylot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Hélène Daunes
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Nadège Carrié
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Liliana E Lucca
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Aurore Perrot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Jill Corre
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| |
Collapse
|
5
|
Dekojová T, Gmucová H, Macečková D, Klieber R, Ostašov P, Leba M, Vlas T, Jungová A, Caputo VS, Čedíková M, Lysák D, Jindra P, Holubová M. Lymphocyte profile in peripheral blood of patients with multiple myeloma. Ann Hematol 2024:10.1007/s00277-024-05820-x. [PMID: 38832999 DOI: 10.1007/s00277-024-05820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
Collapse
Affiliation(s)
- Tereza Dekojová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Hana Gmucová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Diana Macečková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Robin Klieber
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Pavel Ostašov
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen, 301 00, Czech Republic
| | - Tomáš Vlas
- Institute of Allergology and Immunology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Alexandra Jungová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Valentina S Caputo
- Cancer Biology and Therapy laboratory, School of Applied Sciences, London South Bank University, London, UK
| | - Miroslava Čedíková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Daniel Lysák
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Monika Holubová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic.
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
| |
Collapse
|
6
|
Zhang L, Peng X, Ma T, Liu J, Yi Z, Bai J, Li Y, Li L, Zhang L. Natural killer cells affect the natural course, drug resistance, and prognosis of multiple myeloma. Front Cell Dev Biol 2024; 12:1359084. [PMID: 38410372 PMCID: PMC10895066 DOI: 10.3389/fcell.2024.1359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Multiple myeloma (MM), a stage-developed plasma cell malignancy, evolves from monoclonal gammopathy of undetermined significance (MGUS) or smoldering MM (SMM). Emerging therapies including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, chimeric antigen-T/natural killer (NK) cells, bispecific T-cell engagers, selective inhibitors of nuclear export, and small-molecule targeted therapy have considerably improved patient survival. However, MM remains incurable owing to inevitable drug resistance and post-relapse rapid progression. NK cells with germline-encoded receptors are involved in the natural evolution of MGUS/SMM to active MM. NK cells actively recognize aberrant plasma cells undergoing malignant transformation but are yet to proliferate during the elimination phase, a process that has not been revealed in the immune editing theory. They are potential effector cells that have been neglected in the therapeutic process. Herein, we characterized changes in NK cells regarding disease evolution and elucidated its role in the early clinical monitoring of MM. Additionally, we systematically explored dynamic changes in NK cells from treated patients who are in remission or relapse to explore future combination therapy strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Banerjee R, Cicero KI, Lee SS, Cowan AJ. Definers and drivers of functional high-risk multiple myeloma: insights from genomic, transcriptomic, and immune profiling. Front Oncol 2023; 13:1240966. [PMID: 37849816 PMCID: PMC10577204 DOI: 10.3389/fonc.2023.1240966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Traditional prognostic models for newly diagnosed patients with multiple myeloma (MM), including International Staging System criteria and number of high-risk chromosomal abnormalities, are based on disease characteristics at diagnosis. However, the identification of patients at risk of more rapidly progressive MM is inherently a dynamic assessment. In a subset of patients with MM, adverse disease biology only becomes evident after the failure of first-line therapy. We define this entity as functional high-risk MM (FHRMM), encompassing relapse within 18 months of treatment initiation and/or within 12 months of frontline autologous stem cell transplantation. FHRMM is not adequately captured by traditional prognostic models, and there is a need for better understanding of mechanisms or risk factors for early relapse or progression. In this review, we explore potential definitions of FHRMM before delving into its underlying drivers based on genetic, transcriptomic, and immune cell profiling studies. Emerging data suggest that specific features of both myeloma cells and immune cells can enable the FHRMM phenotype. We conclude our review by discussing ongoing and future studies that seek to identify and intervene upon patients with FHRMM preemptively.
Collapse
Affiliation(s)
- Rahul Banerjee
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kara I. Cicero
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sarah S. Lee
- Division of Myeloma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, CA, United States
| | - Andrew J. Cowan
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
9
|
Anderson JL, Sandstrom K, Smith WR, Wetzel M, Klenchin VA, Evans DT. MHC Class I Ligands of Rhesus Macaque Killer Cell Ig-like Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1815-1826. [PMID: 37036309 PMCID: PMC10192222 DOI: 10.4049/jimmunol.2200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Definition of MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as an animal model for infectious diseases, reproductive biology, and transplantation. To provide a more complete foundation for studying NK cell responses, rhesus macaque KIRs representing common allotypes of lineage II KIR genes were tested for interactions with MHC class I molecules representing diverse Macaca mulatta (Mamu)-A, -B, -E, -F, -I, and -AG alleles. KIR-MHC class I interactions were identified by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. Ligands for 12 KIRs of previously unknown specificity were identified that fell into three general categories: interactions with multiple Mamu-Bw4 molecules, interactions with Mamu-A-related molecules, including allotypes of Mamu-AG and the hybrid Mamu-B*045:03 molecule, or interactions with Mamu-A1*012:01. Whereas most KIRs found to interact with Mamu-Bw4 are inhibitory, most of the KIRs that interact with Mamu-AG are activating. The KIRs that recognize Mamu-A1*012:01 belong to a phylogenetically distinct group of macaque KIRs with a 3-aa deletion in the D0 domain that is also present in human KIR3DL1/S1 and KIR3DL2. This study more than doubles the number of rhesus macaque KIRs with defined MHC class I ligands and identifies interactions with Mamu-AG, -B*045, and -A1*012. These findings support overlapping, but nonredundant, patterns of ligand recognition that reflect extensive functional diversification of these receptors.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
10
|
Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. Int J Mol Sci 2022; 24:ijms24010204. [PMID: 36613644 PMCID: PMC9820370 DOI: 10.3390/ijms24010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.
Collapse
|
11
|
Porrata LF. Natural Killer Cells Are Key Host Immune Effector Cells Affecting Survival in Autologous Peripheral Blood Hematopoietic Stem Cell Transplantation. Cells 2022; 11:3469. [PMID: 36359863 PMCID: PMC9657161 DOI: 10.3390/cells11213469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The infusion of autograft immune effector cells directly impacts the clinical outcomes of patients treated with autologous peripheral blood hematopoietic stem cell transplantation, suggesting the possibility of an autologous graft-versus tumor cells. Furthermore, the early recovery of immune effector cells also affects survival post-autologous peripheral blood hematopoietic stem cell transplantation. Natural killer cells are among the immune effector cells reported to be collected, infused, and recovered early post-autologous peripheral blood hematopoietic stem cell transplantation. In this review, I attempt to give an update on the role of natural killer cells regarding improving survival outcomes on patients treated with autologous peripheral blood hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Luis F Porrata
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
12
|
Bottino C, Della Chiesa M, Sorrentino S, Morini M, Vitale C, Dondero A, Tondo A, Conte M, Garaventa A, Castriconi R. Strategies for Potentiating NK-Mediated Neuroblastoma Surveillance in Autologous or HLA-Haploidentical Hematopoietic Stem Cell Transplants. Cancers (Basel) 2022; 14:cancers14194548. [PMID: 36230485 PMCID: PMC9559312 DOI: 10.3390/cancers14194548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary High-risk neuroblastomas (HR-NB) are malignant tumors of childhood that are treated with a very aggressive and life-threatening approach; this includes autologous hemopoietic stem cell transplantation (HSCT) and the infusion of a mAb targeting the GD2 tumor-associated antigen. Although the current treatment provided benefits, the 5-year overall survival remains below 50% due to relapses and refractoriness to therapy. Thus, there is an urgent need to ameliorate the standard therapeutic protocol, particularly improving the immune-mediated anti-tumor responses. Our review aims at summarizing and critically discussing novel immunotherapeutic strategies in HR-NB, including NK cell-based therapies and HLA-haploidentical HSCT from patients’ family. Abstract High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity. Of note, immunotherapy is a promising therapeutic option in cancer and could be optimized by several strategies. These include the HLA-haploidentical αβT/B-depleted HSCT, and the antibody targeting of novel NB-associated antigens such as B7-H3, and PD1. Other approaches could limit the immunoregulatory role of tumor-derived exosomes and potentiate the low antibody-dependent cell cytotoxicity of CD16 dim/neg NK cells, abundant in the early phase post-transplant. The latter effect could be obtained using multi-specific tools engaging activating NK receptors and tumor antigens, and possibly holding immunostimulatory cytokines in their construct. Finally, treatments also consider the infusion of novel engineered cytokines with scarce side effects, and cell effectors engineered with chimeric antigen receptors (CARs). Our review aims to discuss several promising strategies that could be successfully exploited to potentiate the NK-mediated surveillance of neuroblastoma, particularly in the HSCT setting. Many of these approaches are safe, feasible, and effective at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363855
| | - Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology/Oncology and HSCT, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Massimo Conte
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alberto Garaventa
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
13
|
Yi Z, Ma T, Liu J, Tie W, Li Y, Bai J, Li L, Zhang L. The yin–yang effects of immunity: From monoclonal gammopathy of undetermined significance to multiple myeloma. Front Immunol 2022; 13:925266. [PMID: 35958625 PMCID: PMC9357873 DOI: 10.3389/fimmu.2022.925266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is the third most common malignant neoplasm of the hematological system. It often develops from monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) precursor states. In this process, the immune microenvironment interacts with the MM cells to exert yin and yang effects, promoting tumor progression on the one hand and inhibiting it on the other. Despite significant therapeutic advances, MM remains incurable, and the main reason for this may be related to the complex and variable immune microenvironment. Therefore, it is crucial to investigate the dynamic relationship between the immune microenvironment and tumors, to elucidate the molecular mechanisms of different factors in the microenvironment, and to develop novel therapeutic agents targeting the immune microenvironment of MM. In this paper, we review the latest research progress and describe the dual influences of the immune microenvironment on the development and progression of MM from the perspective of immune cells and molecules.
Collapse
Affiliation(s)
- Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pediatric Orthopedics and Pediatrics Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenting Tie
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|