1
|
Behem CR, Friedheim T, Holthusen H, Rapp A, Suntrop T, Graessler MF, Pinnschmidt HO, Wipper SH, von Lucadou M, Schwedhelm E, Renné T, Pfister K, Schierling W, Trepte CJC. Goal-directed colloid versus crystalloid therapy and microcirculatory blood flow following ischemia/reperfusion. Microvasc Res 2024; 152:104630. [PMID: 38048876 DOI: 10.1016/j.mvr.2023.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Ischemia/reperfusion can impair microcirculatory blood flow. It remains unknown whether colloids are superior to crystalloids for restoration of microcirculatory blood flow during ischemia/reperfusion injury. We tested the hypothesis that goal-directed colloid - compared to crystalloid - therapy improves small intestinal, renal, and hepatic microcirculatory blood flow in pigs with ischemia/reperfusion injury. METHODS This was a randomized trial in 32 pigs. We induced ischemia/reperfusion by supra-celiac aortic-cross-clamping. Pigs were randomized to receive either goal-directed isooncotic hydroxyethyl-starch colloid or balanced isotonic crystalloid therapy. Microcirculatory blood flow was measured using Laser-Speckle-Contrast-Imaging. The primary outcome was small intestinal, renal, and hepatic microcirculatory blood flow 4.5 h after ischemia/reperfusion. Secondary outcomes included small intestinal, renal, and hepatic histopathological damage, macrohemodynamic and metabolic variables, as well as specific biomarkers of tissue injury, renal, and hepatic function and injury, and endothelial barrier function. RESULTS Small intestinal microcirculatory blood flow was higher in pigs assigned to isooncotic hydroxyethyl-starch colloid therapy than in pigs assigned to balanced isotonic crystalloid therapy (768.7 (677.2-860.1) vs. 595.6 (496.3-694.8) arbitrary units, p = .007). There were no important differences in renal (509.7 (427.2-592.1) vs. 442.1 (361.2-523.0) arbitrary units, p = .286) and hepatic (604.7 (507.7-701.8) vs. 548.7 (444.0-653.3) arbitrary units, p = .376) microcirculatory blood flow between groups. Pigs assigned to colloid - compared to crystalloid - therapy also had less small intestinal, but not renal and hepatic, histopathological damage. CONCLUSIONS Goal-directed isooncotic hydroxyethyl-starch colloid - compared to balanced isotonic crystalloid - therapy improved small intestinal, but not renal and hepatic, microcirculatory blood flow in pigs with ischemia/reperfusion injury. Whether colloid therapy improves small intestinal microcirculatory blood flow in patients with ischemia/reperfusion needs to be investigated in clinical trials.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till Friedheim
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Holthusen
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adina Rapp
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Suntrop
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine H Wipper
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Karin Pfister
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wilma Schierling
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Li X, Zhou W, Guo D, Hu Y, Zhou H, Chen Y. Cardiac Radiofrequency Ablation Exacerbates Myocardial Injury through Pro-Inflammatory Response and Pro-Oxidative Stress in Elderly Patients with Persistent Atrial Fibrillation. Curr Vasc Pharmacol 2024; 22:137-152. [PMID: 38213173 DOI: 10.2174/0115701611257644231215071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND There is a need to assess myocardial damage after radiofrequency ablation of the pulmonary veins (PV) for persistent atrial fibrillation (PAF) in elderly patients. OBJECTIVE To evaluate oxidative stress, inflammatory response and myocardial damage in elderly patients with PAF after radiofrequency ablation of the PV. METHODS High-sensitivity troponin T (hsTnT), malondialdehyde-modified low-density lipoprotein (MDA-LDL), acrolein (ACR), lipid hydroperoxide (LHP), toll-like receptor 4 (TLR4), soluble growth stimulation expressed gene 2 (sST2), angiotensin II (Ang II) and myocardial blood flow (MBF) were determined before ablation and at 1, 3 and 5 months after radiofrequency ablation. RESULTS The levels of hsTnT, MDA-LDL, ACR, LHP, TLR4, sST2 and Ang II were increased 3 months after ablations compared with before ablation and 1 month after ablation, respectively (P<0.001); they were further increased at 5 months after ablation compared with the 1- and 3-month groups, respectively (P<0.001). MBF was decreased in the 3 months group after ablations compared with before ablation and 1-month after ablation, respectively (P<0.001), and was further decreased in 5-months after ablations compared with 1-month and 3-month groups, respectively (P<0.001). Patients with epicardial monopolar radiofrequency ablation had higher levels of hsTnT, MDA-LDL, ACR, LHP, TLR4, sST2, Ang II and lower MBF than patients with endocardial monopolar and bipolar radiofrequency ablations, respectively (P<0.001). CONCLUSION Monopolar radiofrequency ablation method could result in more myocardial injury than bipolar radiofrequency ablation. Oxidative stress and inflammatory response may be involved in cardiac radiofrequency ablation-induced myocardial injury, resulting in myocardial ischemia in elderly patients with PAF.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 22305, China
| | - Wenhang Zhou
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 22305, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 22305, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Hualan Zhou
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| |
Collapse
|
3
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Gong J, Wei Y, Zhang Q, Tang J, Chang Q. Nomogram predicts atrial fibrillation after coronary artery bypass grafting. BMC Cardiovasc Disord 2022; 22:388. [PMID: 36042409 PMCID: PMC9429785 DOI: 10.1186/s12872-022-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Using the nomogram to intuitively predict atrial fibrillation after coronary artery bypass grafting. Identify high-risk patients with atrial fibrillation and provide preoperative protective therapy. Methods A total of 397 patients that underwent coronary artery bypass grafting were consecutively enrolled. Independent predictors of patients were analyzed by multivariate logistic regression. Two nomograms were constructed to predict postoperative atrial fibrillation. Results The incidence of postoperative atrial fibrillation in this study was 29% (115/397). Multivariate Logistic showed that Age, Operative Time > 4 h, Left Atrial Diameter > 40 mm, Mean Arterial Pressure, Body Mass Index > 23 kg/m2, Insulins, and Statins were independently associated with atrial fibrillation after isolated coronary artery bypass grafting. The nomogram of postoperative atrial fibrillation in patients was constructed using total predictor variables (AUC = 0.727, 95% CI 0.673–0.781). The model was internally validated (AUC = 0.701) by K-fold Cross-validation resampling (K = 5, Times = 400). To make an early intervention, the intraoperative information of the patients was excluded. Only 6 variables before surgery were used to establish the brief nomogram to predict postoperative atrial fibrillation (AUC = 0.707, 95% CI 0.651–0.764). The brief model was internally validated (AUC = 0.683) by resampling with K-fold Cross-validation resampling. Conclusions These two nomograms could be used to predict patients at high risk for atrial fibrillation after isolated coronary artery bypass grafting.
Collapse
Affiliation(s)
- Jingshuai Gong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yangyan Wei
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Jiwen Tang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
5
|
Qiu Y, Shen J, Jiang W, Yang Y, Liu X, Zeng Y. Sphingosine 1-phosphate and its regulatory role in vascular endothelial cells. Histol Histopathol 2022; 37:213-225. [PMID: 35118637 DOI: 10.14670/hh-18-428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive metabolite of sphingomyelin. S1P activates a series of signaling cascades by acting on its receptors S1PR1-3 on endothelial cells (ECs), which plays an important role in endothelial barrier maintenance, anti-inflammation, antioxidant and angiogenesis, and thus is considered as a potential therapeutic biomarker for ischemic stroke, sepsis, idiopathic pulmonary fibrosis, cancers, type 2 diabetes and cardiovascular diseases. We presently review the levels of S1P in those vascular and vascular-related diseases. Plasma S1P levels were reduced in various inflammation-related diseases such as atherosclerosis and sepsis, but were increased in other diseases including type 2 diabetes, neurodegeneration, cerebrovascular damages such as acute ischemic stroke, Alzheimer's disease, vascular dementia, angina, heart failure, idiopathic pulmonary fibrosis, community-acquired pneumonia, and hepatocellular carcinoma. Then, we highlighted the molecular mechanism by which S1P regulated EC biology including vascular development and angiogenesis, inflammation, permeability, and production of reactive oxygen species (ROS), nitric oxide (NO) and hydrogen sulfide (H₂S), which might provide new ways for exploring the pathogenesis and implementing individualized therapy strategies for those diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Yang
- Department of Orthopeadics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|