1
|
Lu Z, Lyu Z, Dong P, Liu Y, Huang L. N6-methyladenosine RNA modification in stomach carcinoma: Novel insights into mechanisms and implications for diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167793. [PMID: 40088577 DOI: 10.1016/j.bbadis.2025.167793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
N6-methyladenosine (m6A) RNA methylation is crucially involved in the genesis and advancement of gastric cancer (GC) by controlling various pathobiological aspects including gene expression, signal transduction, metabolism, cell death, epithelial-mesenchymal transition, angiogenesis, and exosome function. Despite its importance, the exact mechanisms by which m6A modification influences GC biology remain inadequately explored. This review consolidates the latest advances in uncovering the mechanisms and diverse roles of m6A in GC and proposes new research and translational directions. Key regulators (writers, readers, and erasers) of m6A, such as METTL3/14/16 and WTAP, significantly affect cancer progression, anticancer immune response, and treatment outcomes. m6A modification also impacts immune cell infiltration and the tumor microenvironment, highlighting its potential as a diagnostic and prognostic marker. Interactions between m6A methylation and non-coding RNAs offer further novel insights into GC development and therapeutic targets. Targeting m6A regulators could enhance immunotherapy response, overcome treatment resistance, and improve oncological and clinical outcomes. Models based on m6A can precisely predict treatment response and prognosis in GC. Additional investigation is needed to fully understand the mechanisms of m6A methylation and its potential clinical applications and relevance (e.g., as precise markers for early detection, prediction of outcome, and response to therapy and as therapeutic targets) in GC. Future research should focus on in vivo studies, potential clinical trials, and the examination of m6A modification in other types of cancers.
Collapse
Affiliation(s)
- Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhaojie Lyu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yunmei Liu
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Shanghai Institute of Pancreatic Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Wang C, Chen M, Chen P, Han J, Hu H, Chen J, Wu Q, Zhao D, Wang T, Zhou J, Li Q, Zhou R, Wen Y, Yang J, Shi M, Wang Y. RBM15-mediated metabolic reprogramming boosts immune response in colorectal cancer. Front Immunol 2025; 16:1515568. [PMID: 40370450 PMCID: PMC12075365 DOI: 10.3389/fimmu.2025.1515568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Immune checkpoint blockade (ICB) therapy has shown promise in treating advanced colorectal cancer, particularly in patients with microsatellite instability-high (MSI-H) tumors. However, only a subset of these patients responds favorably, highlighting the need for strategies to improve immunotherapy efficacy. Methods To identify potential regulators of immunotherapy response, we conducted a comprehensive analysis of colorectal cancer datasets from The Cancer Genome Atlas (TCGA). We performed multi-omics analyses and functional assays in both human and murine colorectal cancer cell lines. Additionally, we evaluated tumor growth and immune cell infiltration using syngeneic mouse models. Results Our analysis revealed that RNA binding motif protein 15 (RBM15) is highly expressed in colorectal cancer and correlates with poor patient prognosis. Functional studies demonstrated that RBM15 loss led to increased expression of fumarate hydratase (FH). This led to decreased levels of fumarate, a metabolite known to suppress anti-tumor immune responses. In vivo, RBM15 depletion significantly delayed tumor progression and enhanced CD8⁺ T cell infiltration and activation in the tumor microenvironment. Discussion These findings identify RBM15 as a negative regulator of anti-tumor immunity in colorectal cancer. Targeting RBM15 may represent a novel strategy to boost immune responsiveness and improve outcomes for patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyan Chen
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Panyu Chen
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinlu Han
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Hu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Chen
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - De Zhao
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongshuai Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runkai Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Luo D, Liu Y, Lu Z, Huang L. Targeted therapy and immunotherapy for gastric cancer: rational strategies, novel advancements, challenges, and future perspectives. Mol Med 2025; 31:52. [PMID: 39923010 PMCID: PMC11806620 DOI: 10.1186/s10020-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/10/2025] [Indexed: 02/10/2025] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide, and its treatment has been a focus of medical research. Herein we systematically review the current status of and advancements in targeted therapy and immunotherapy for GC, which have emerged as important treatment strategies in recent years with great potential, and summarize the efficacy and safety of such treatments. Targeted therapies against key targets in GC, including epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR), have shown remarkable therapeutic efficacies by inhibiting tumor progression and/or blood supply. In particular, markable breakthroughs have been made in HER2-targeting drugs for HER2-positive GC patients. To address intrinsic and acquired resistances to HER2-targeting drugs, novel therapeutic agents including bispecific antibodies and antibody-drug conjugates (ADC) targeting HER2 have been developed. Immunotherapy enhances the recognition and elimination of cancer cells by activating body anticancer immune system. Programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1) antibodies are the most commonly used immunotherapeutic agents and have been used with some success in GC treatment. Innovative immunotherapy modalities, including adoptive immune cell therapy, tumor vaccines, and non-specific immunomodulators therapy, and oncolytic viruses have shown promise in early-stage clinical trials for GC. Clinical trials have supported that targeted therapy and immunotherapy can significantly improve the survival and quality of life of GC patients. However, the effects of such therapies need to be further improved and more personalized, with advancement in researches on tumor immune microenvironment. Further studies remain needed to address the issues of drug resistance and adverse events pertaining to such therapies for GC. The combined application of such therapies and individualized treatment strategies should be further explored with novel drugs developed, to provide more effective treatments for GC patients.
Collapse
Affiliation(s)
- Dong Luo
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- Center of Structural Heart Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunmei Liu
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai, 200444, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
- National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
4
|
Zheng W, Fu Z, Tan X, Liang X, Cao L. Bioinformatic Analysis of m6A Regulator-Mediated RNA Methylation Modification Patterns and Immune Microenvironment Characterization in Endometriosis. Biochem Genet 2025; 63:433-464. [PMID: 38451401 DOI: 10.1007/s10528-024-10725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Epigenetic regulation plays an essential role in immunity and inflammation in endometriosis. In this study, we aimed to explore differences in m6A regulators between endometriosis patients and normal women and analyze the effect of m6A modification on immune and inflammatory microenvironment. The samples for analysis were downloaded from the Gene Expression Omnibus database, including ectopic endometrium (EC), eutopic endometrium (EU), and normal eutopic endometrium (NM) samples from non-endometriosis women. The validation process involved utilizing our previous RNA-sequencing data. Subsequently, a correlation analysis was performed to ascertain the relationship between m6A and the inflammatory microenvironment profile, encompassing infiltrating immunocytes, immune-inflammation reaction gene sets, and human leukocyte antigen genes. LASSO analyses were used to develop risk signature. The findings of this study indicate that the m6A regulators FTO were observed to be significantly up-regulated, while YTHDF2, CBLL1, and METTL3 were down-regulated in endometriosis tissues. The CIBERSORT analysis revealed that the local inflammatory microenvironment of ectopic lesions plays a crucial role in the development of endometriosis. Notably, M2 macrophages exhibited a significant difference between the EC and NM groups. Moreover, M2 macrophages demonstrated a positive correlation with FTO (0.39) and a negative correlation with CBLL1 (- 0.35). Furthermore, consistent clustering of EC and EU samples resulted in the identification of three distinct cell subtypes. Among different cell subtypes, significant differences were in immunoinfiltrating cells, plasma cells, naive CD4 T cells, memory activated CD4 T cells, gamma delta T cells, resting NK cells and activated NK cells but not in macrophages. Furthermore, the identification of various compounds capable of targeting these m6A genes was achieved. In conclusions, our integrated bioinformatics analysis results demonstrated that m6A-related genes METTL3, CBLL1 and YTHDF2 may be useful biomarkers for endometriosis in ectopic endometrium. The potential therapeutic approach of targeting m6A regulators holds promise for the treatment of endometriosis.
Collapse
Affiliation(s)
- Weilin Zheng
- Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Zhiyi Fu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Xi Tan
- Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Xuefang Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Lixing Cao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
5
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
6
|
Li X, Peng L, Yang X, Luo J, Wang J, Mou K, Zhou H, Luo Y, Xiang L. N6-methyladenosine RNA methylation, a new hallmark of metabolic reprogramming in the immune microenvironment. Front Immunol 2024; 15:1464042. [PMID: 39759516 PMCID: PMC11695279 DOI: 10.3389/fimmu.2024.1464042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
N6-methyladenosine is one of the most common and reversible post-transcriptional modifications in eukaryotes, and it is involved in alternative splicing and RNA transcription, degradation, and translation. It is well known that cancer cells acquire energy through metabolic reprogramming to exhibit various biological behaviors. Moreover, numerous studies have demonstrated that m6A induces cancer metabolic reprogramming by regulating the expression of core metabolic genes or by activating metabolic signaling pathways. Meanwhile, m6A modifications and related regulators are key targets in the regulation of immune effects. We further summarize how m6A modifications contribute to tumor metabolism, and how these events affect the tumor immune microenvironment, with a specific focus on different cell types. Finally, we focus on the specific applications of this field to tumor immunotherapy. We review the potential role of m6A in metabolic reprogramming of tumor immune microenvironment and its regulatory mechanism, with the aim of providing new targets for tumor metabolic regulation and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuelian Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Chen X, Xu W, Pan J, Yang H, Li Y, Chen X, Sun Y, Liu Q, Qiu S. m6A methylation profiling as a prognostic marker in nasopharyngeal carcinoma: insights from MeRIP-Seq and RNA-Seq. Front Immunol 2024; 15:1492648. [PMID: 39726587 PMCID: PMC11669702 DOI: 10.3389/fimmu.2024.1492648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a type of malignant tumors commonly found in Southeast Asia and China, with insidious onset and clinical symptoms. N6-methyladenosine (m6A) modification significantly contributes to tumorigenesis and progression by altering RNA secondary structure and influencing RNA-protein binding at the transcriptome level. However, the mechanism and role of abnormal m6A modification in nasopharyngeal carcinoma remain unclear. Methods Nasopharyngeal Carcinoma tissues from 3 patients and non-cancerous nasopharyngeal tissues from 3 individuals, all from Fujian Cancer Hospital, were sequenced for m6A methylation. These were combined with transcriptome sequencing data from 192 nasopharyngeal cancer tissues. Genes linked to prognosis were discovered using differential analysis and univariate Cox regression. Subsequently, a prognostic model associated with m6A was developed through the application of LASSO regression analysis. The model's accuracy was verified using both internal transcriptome databases and external databases. An extensive evaluation of the tumor's immune microenvironment and signaling pathways was performed, analyzing both transcriptomic and single-cell data. Results The m6A methylation sequencing analysis revealed 194 genes with varying expression levels, many of which are predominantly associated with immune pathways. By integrating transcriptome sequencing data, 19 m6A-modified genes were found to be upregulated in tumor tissues, leading to the development of a three-gene (EME1, WNT4, SHISA2) risk prognosis model. The group with lower risk exhibited notable enrichment in pathways related to immunity, displaying traits like enhanced survival rates, stronger immune profiles, and increased responsiveness to immunotherapy when compared to the higher-risk group. Single-cell analysis revealed that malignant cells exhibited the highest risk score levels compared to immune cells, with a high-risk score indicating worse biological behavior. The three hub genes demonstrated significant correlation with m6A modification regulators, and MeRIP-RT-PCR confirmed the occurrence of m6A methylation in these genes within nasopharyngeal carcinoma cells. Conclusions A prognostic model for nasopharyngeal carcinoma risk based on m6A modification genes was developed, and its prognostic value was confirmed through self-assessment data. The study highlighted the crucial impact of m6A modification on the immune landscape of nasopharyngeal cancer.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junping Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yi Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
8
|
Yang Y, Hao L, Guiyang L, Haozhe P. Multifaceted bioinformatic analysis of m6A-related ferroptosis and its link with gene signatures and tumour-infiltrating immune cells in gliomas. J Cell Mol Med 2024; 28:e70060. [PMID: 39248438 PMCID: PMC11382363 DOI: 10.1111/jcmm.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Whether N6-Methyladenosine (m6A)- and ferroptosis-related genes act on immune responses to regulate glioma progression remains unanswered. Data of glioma and corresponding normal brain tissues were fetched from the TCGA database and GTEx. Differentially expressed genes (DEGs) were identified for GO and KEGG enrichment analyses. The FerrDb database was based to yield ferroptosis-related DEGs. Hub genes were then screened out using the cytoHubba database and validated in clinical samples. Immune cells infiltrating into the glioma tissues were analysed using the CIBERSORT R script. The association of gene signature underlying the m6A-related ferroptosis with tumour-infiltrating immune cells and immune checkpoints in low-grade gliomas was analysed. Of 6298 DEGs enriched in mRNA modifications, 144 were ferroptosis-related; NFE2L2 and METTL16 showed the strongest positive correlation. METTL16 knockdown inhibited the migrative and invasive abilities of glioma cells and induced ferroptosis in vitro. NFE2L2 was enriched in the anti-m6A antibody. Moreover, METTL16 knockdown reduced the mRNA stability and level of NFE2L2 (both p < 0.05). Proportions of CD8+ T lymphocytes, activated mast cells and M2 macrophages differed between low-grade gliomas and normal tissues. METTL16 expression was negatively correlated with CD8+ T lymphocytes, while that of NFE2L2 was positively correlated with M2 macrophages and immune checkpoints in low-grade gliomas. Gene signatures involved in the m6A-related ferroptosis in gliomas were identified via bioinformatic analyses. NFE2L2 interacted with METTL16 to regulate the immune response in low-grade gliomas, and both molecules may be novel therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Yang Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
- TCM Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liu Hao
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Liu Guiyang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Piao Haozhe
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
9
|
Yu F, Feng Y, Wang Q, Sun J. N 6-methyladenosine (m 6A) Writer WTAP Potentiates Hepatocellular Carcinoma Immune Evasion and Aerobic Glycolysis. Cell Biochem Biophys 2024; 82:2321-2331. [PMID: 38872051 DOI: 10.1007/s12013-024-01342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of most prevalent malignant tumors with poor prognosis and a high mortality rate. Recent research indicates that N6-methyladenosine (m6A) and tumor immunotherapy are important factors in HCC. More research is still needed to fully understand the profound roles that m6A writer Wilms tumor 1-associated protein (WTAP) and CD8+ T cells play in the antitumor immunity that prevents HCC from progressing. According to the findings of our investigation, WTAP was significantly elevated in HCC cells and was associated with a poor prognosis. Functionally, WTAP accelerated HCC immune evasion and aerobic glycolysis while suppressing the tumor-killing ability of CD8+ T cells. On the other hand, WTAP knockdown had the opposite effect. WTAP targets the m6A site on the 3'-UTR of PD-L1 mRNA, which mechanistically increases the stability of PD-L1 mRNA. These results showed that WTAP inhibited CD8+ T cells' antitumor activity, which in turn deteriorated HCC immune evasion and aerobic glycolysis. In conclusion, our research uncovers a novel mechanism for WTAP on the tumor-killing ability of CD8+ T cells, which helps to overcome HCC immune evasion.
Collapse
Affiliation(s)
- Fatao Yu
- Department of infectious disease, Zibo Central Hospital, Zibo, 255020, China
| | - Yuling Feng
- Department of infectious disease, Zibo Central Hospital, Zibo, 255020, China.
| | - Qing Wang
- Department of hepatobiliary surgery, Zibo Central Hospital, Zibo, 255020, China
| | - Jian Sun
- Department of hepatobiliary surgery, Zibo Central Hospital, Zibo, 255020, China
| |
Collapse
|
10
|
Sun X, Wang H, Pu X, Wu Y, Yuan X, Wang X, Lu H. Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification. Cancer Gene Ther 2024; 31:1315-1322. [PMID: 38834772 DOI: 10.1038/s41417-024-00791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
N6-methyladenosine (m6A), a posttranscriptional regulatory mechanism, is the most common epigenetic modification in mammalian mRNA. M6A modifications play a crucial role in the developmental network of immune cells. The expression of m6A-related regulators often affects carcinogenesis and tumour suppression networks. In the tumour microenvironment, m6A-modified enzymes can affect the occurrence and progression of tumours by regulating the activation and invasion of tumour-associated immune cells. Immunotherapy, which utilises immune cells, has been demonstrated to be a powerful weapon in tumour treatment and is increasingly being used in the clinic. Here, we provide an updated and comprehensive overview of how m6A modifications affect invasive immune cells and their potential role in immune regulation. In addition, we summarise the regulation of epigenetic regulators associated with m6A modifications in tumour cells on the antitumour response of immune cells in the tumour immune microenvironment. These findings provide new insights into the role of m6A modifications in the immune response and tumour development, leading to the development of novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huirong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuting Wu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqiang Lu
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Qian Y, Zhang Q, Ren Y, Cao L, Zheng S, Li B, Wu X, Meng Z, Xu K. Prognostic Value and Immune Landscapes of Four Types of RNA Modification Writer-Related LncRNAs Signature in Lung Adenocarcinoma. J Cancer 2024; 15:4818-4837. [PMID: 39132150 PMCID: PMC11310873 DOI: 10.7150/jca.96755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the predominant pathological subtype of non-small cell lung cancer (NSCLC). The four primary forms of RNA adenosine modifications, N6-methyladenosine (m6A), N1-methyladenosine (m1A), alternative polyadenylation (APA) and adenosine-to-inosine (A-to-I) RNA editing, play a critical role in tumor progression. However, the clinical significance of RNA modification writer-related long non-coding RNAs (lncRNAs) in LUAD remains unclear. Methods: The Cancer Genome Atlas (TCGA) database was used to obtain transcriptomic and clinicopathological data. Univariate Cox regression analysis, consensus cluster analysis, and least absolute shrinkage and selection operator (LASSO) Cox regression were used to establish the molecular subtypes and prognostic signatures of LUAD based on the expression levels of lncRNAs. ESTIMATE, CIBERSORT, ssGSEA, and TIDE algorithms were used to investigate immune cell infiltration and immunotherapy. In addition, IC50 of chemotherapeutic agents were calculated for different risk subgroups using the "pRRophetic" R package. Finally, the expression of prognosis-associated lncRNAs in lung cancer tissues was verified using qPCR. Results: A prognostic risk signature containing seven lncRNAs associated with four types of RNA modification writers was established. The high-risk group had a poorer prognosis and higher clinicopathological grade. Most immune checkpoint genes and immune cell infiltration differed significantly between the two risk groups. The high-risk group had a higher tumor mutation burden (TMB), lower TIDE score, and was more sensitive to immunotherapy. Conclusion: We developed an RNA modification writer-related seven-lncRNA signature prognostic model that was associated with prognosis, tumor microenvironment, and response to immunotherapy in LUAD patients. Among them, LINC01352, AC024075.1, AC005070.3, AL133445.2, AC005856.1, and LINC00968 were downregulated in LUAD, whereas AC092168.2 was upregulated. This model may be a valuable tool for personalized LUAD therapies.
Collapse
Affiliation(s)
- Yongmei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sijia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bingbing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
12
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Wang F, Chen P, Ouyang S, Xiong K, Liu Z, Wang Y. Identification of prognostic m6A modification patterns and score system in melanoma patients. Medicine (Baltimore) 2024; 103:e37950. [PMID: 38669381 PMCID: PMC11049698 DOI: 10.1097/md.0000000000037950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most common modification on RNAs and LncRNAs. It plays an important role in cancer stem cell differentiation, T cell differentiation, and immune homeostasis. In this study, we explored the potential roles of m6A modification of RNA in melanoma and investigated the immune cell infiltration in tumor microenvironment in diverse m6Aclusters and different m6Ascore groups. A consensus clustering algorithm determined m6A modification patterns based on 14 m6A regulators, and further explored the biological functions and the connection with TME. An m6A-related gene signature (m6Ascore) was constructed based on m6A-related genes using principal component analysis. Three m6A modification patterns were identified based on 14 m6A regulators, named as m6Aclusters A-C. The prognosis of m6Acluster A was more favorable than m6Aclusters B and C, and it was more closely associated with immune regulation. To quantify the m6A modification patterns of individual tumor, an m6Ascore was constructed, and patients were classified into high and low m6Ascore groups. The low m6Ascore group, which had a favorable prognosis, was more relevant to immunology. The expression of PD-L1 was higher and the immunophenoscore (IPS) revealed stronger response to immunotherapy in the low m6Ascore group. This study identified 3 m6A modification patterns with different immune characteristics and constructed an m6Ascore system to predict prognosis and immunogenicity of patients, which is conducive to clinical prognosis judgment and individual treatment.
Collapse
Affiliation(s)
- Feixiang Wang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Peijie Chen
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Si Ouyang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Kaixin Xiong
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Zichuan Liu
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Yao Wang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| |
Collapse
|
14
|
Liu S, Xu W, Shu H, Dai Y, Du Y, Liu Y, Huang L, Sun G. Associations of circulating immunomarkers with the efficacy of immunotherapy for primary hepatic carcinoma. Cancer Med 2023; 12:21830-21848. [PMID: 38054365 PMCID: PMC10757102 DOI: 10.1002/cam4.6754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Peripheral blood immunomarkers are associated with prognosis in patients with solid tumors receiving chemotherapy or immunotherapy. In this study, the associations of circulating neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR), as well as their dynamic changes were investigated in relation to the efficacy of immunotherapy in patients with primary liver cancer. METHODS Comparisons were made between NLR, MLR, and PLR among individuals exhibiting disease control (defined as the best response of partial response [PR] or stable disease [SD]) and those with progressive disease (PD). Additionally, disease control rate (DCR), overall survival (OS), and progression-free survival (PFS) were compared between individuals with different NLR, MLR, and PLR levels before initiating palliative immunotherapy. Furthermore, comparisons were made between patients with different alterations in the ratios at the second cycle of immunotherapy compared to baseline. These analyses were performed using univariate and multivariate approaches. A total of 119 Chinese patients with liver cancer who underwent immunotherapy were included in this study, which focused on hepatocellular carcinoma (HCC). RESULTS In cases with HCC (n = 104), the cutoffs of NLR, MLR, and PLR to differentiate treatment responders from nonresponders were 3.38, 0.28, and 227.18, respectively. Patients with the best response of PR or SD had significantly lower NLR and MLR. Patients with NLR <3.38 and those with MLR <0.28 significantly had longer OS and PFS than their counterparts, and those with PLR <227.18 had significantly longer PFS, both in overall patients and in various patient subgroups. Lower NLR, MLR, or PLR was associated with earlier BCLC stage, fewer metastatic sites, less frequent extrahepatic metastasis, or better performance status. For individuals who had an unfavorable baseline NLR ≥3.38, MLR ≥0.28, or a favorable baseline PLR <227.18 prior to first immunotherapy, a decrease in NLR, MLR, or PLR at Cycle 2 of immunotherapy was significantly associated with a higher DCR. CONCLUSIONS Among patients with HCC who received immunotherapy, lower NLR, and MLR at baseline in overall patients were significantly associated with better disease control and more favorable survival outcomes (both OS and PFS), and lower PLR was significantly associated with longer PFS. The findings of this research may offer useful hints foranoptimized selection of patients with liver cancer who may benefit more from immunotherapy.
Collapse
Affiliation(s)
- Sha Liu
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Wentao Xu
- School of Clinical MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Hang Shu
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ying Dai
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yunmei Liu
- School of Cultural Heritage and Information ManagementShanghai UniversityShanghaiChina
| | - Lei Huang
- Department of Oncology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Medical Center on Aging of Ruijin Hospital, MCARJHShanghai Jiaotong University School of MedicineShanghaiChina
| | - Guoping Sun
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
15
|
Qiu X, Chen D, Huang S, Chen N, Wu J, Liang S, Peng P, Qin M, Huang J, Liu S. Identification and verification of m6A-related miRNAs correlated with prognosis and immune microenvironment in colorectal cancer. Medicine (Baltimore) 2023; 102:e35984. [PMID: 37986290 PMCID: PMC10659607 DOI: 10.1097/md.0000000000035984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
It's well known that N6-methyladenosine (m6A) modification is the most abundant modification in multiple RNA species. miRNAs play important roles in m6A modification and are closely related with occurrence and development of colorectal cancer (CRC). Thus, the aim of this study was to identify the prognostic value of m6A-related miRNAs and explore the correlation between the miRNAs and immune microenvironment in CRC. The differentially expressed m6A regulators and differentially expressed miRNAs between CRC tissues and adjacent normal tissues were identified based on TCGA dataset, and the m6A-related miRNAs were screened. The CRC patients from TCGA were randomized (1:1) into training set and validation set, and the risk score was established in the training set. Next, risk score was verified in the validation set and GSE92928 from GEO datasets. Besides, the relationship among tumor mutational burden, immune microenvironment and risk score were analyzed. What's more, RT-qPCR were used to explore the expression levels of the miRNAs in risk score between SW480 and SW620. A total of 29 m6A-related miRNAs were screened out, and a 5-differentially expressed miRNAs risk score was established. Kaplan-Meier analysis and ROC curves revealed the risk score could predict the prognosis of CRC, accurately. Similarly, the patients in the high-risk group had shorter overall survival in GSE92928. The risk score was relevant with the tumor mutational burden and immune infiltration, and the expression of HAVCR2 was significant difference between 2 risk groups. The expression levels of miR-328-3p, miR-3934-5p, miR-664b-5p and miR-3677-3p were down-regulated in SW620 compared with SW480, only the expression level of miR-200c-5p was up-regulated in SW620. The findings provided the new insights into the correlation between miRNAs and m6A regulators. The m6A-related miRNAs could predict the prognosis of CRC and provide the valuable information of immunotherapy in CRC patients.
Collapse
Affiliation(s)
- Xinze Qiu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Da Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanpei Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ni Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangni Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shengmei Liang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Peng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Zhao H, Shi C, Zhao G, Liu J, Wang X, Liang J, Li F. RNA modification regulator DDC in endometrial cancer affects the tumor microenvironment and patient prognosis. Sci Rep 2023; 13:18057. [PMID: 37872211 PMCID: PMC10593861 DOI: 10.1038/s41598-023-44269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is infiltrated by immune cells, which are involved in the growth and proliferation of malignant tumors and resistance to immunotherapy. This study suggested that RNA modification regulators played an important role in the development and prognosis of UCEC. Many studies confirmed that RNA modification played an essential role in tumor immune regulation, and abnormal RNA modification contributed to tumorigenesis and cancer progression. Based on the RNA modification regulatory factors, the UCEC samples from TCGA (The Cancer Genome Atlas) were classified into two clusters, namely Cluster A and Cluster B, using unsupervised consensus clustering. We obtained DEG (differentially expressed genes) between the two clusters, and constructed a risk model of RNA modification-related genes using DEGs. Cluster A had lower RNA modification regulatory factors, richer immune cell infiltration, and better prognosis. The differentially expressed genes between the two clusters were obtained, and these genes were used for modeling. This model divided patients with UCEC into two groups. The low-risk group had better immune infiltration, and the ROC (receiver operating characteristic) curve showed that this model had good predictive efficacy. The low-risk group had a better response to immunotherapy by immune checkpoint prediction. We obtained the key gene L-dopa decarboxylase (DDC) through the intersection of LASSO model genes and GEO dataset GSE17025. We evaluated the potential biological functions of DDC. The differences in the expression of DDC were verified by immunohistochemistry. We evaluated the relationship between DDC and immune cell infiltration and verified this difference using immunofluorescence. Cluster A with low expression of RNA modification regulators has better prognosis and richer immune cell infiltration, therefore, we believed that RNA modification regulators in UCEC were closely related to the tumor microenvironment. Also, the risk score could well predict the prognosis of patients and guide immunotherapy, which might benefit patients with UCEC.
Collapse
Affiliation(s)
- Huai Zhao
- Shengjing Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Chuang Shi
- Guangming Community Health Service Center, 101127, Shunyi District, Beijing, China
| | - Guoguang Zhao
- Shengjing Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Jiamin Liu
- Zigong First People's Hospital, 643099, Zigong, Sichuan, China
| | - Xi Wang
- The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Jie Liang
- The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China.
| | - Fangmei Li
- The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Hiltbrunner S, Cords L, Kasser S, Freiberger SN, Kreutzer S, Toussaint NC, Grob L, Opitz I, Messerli M, Zoche M, Soltermann A, Rechsteiner M, van den Broek M, Bodenmiller B, Curioni-Fontecedro A. Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype. Nat Commun 2023; 14:5154. [PMID: 37620318 PMCID: PMC10449840 DOI: 10.1038/s41467-023-40745-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Immune checkpoint inhibitor treatment has the potential to prolong survival in non-small cell lung cancer (NSCLC), however, some of the patients develop resistance following initial response. Here, we analyze the immune phenotype of matching tumor samples from a cohort of NSCLC patients showing good initial response to immune checkpoint inhibitors, followed by acquired resistance at later time points. By using imaging mass cytometry and whole exome and RNA sequencing, we detect two patterns of resistance¨: One group of patients is characterized by reduced numbers of tumor-infiltrating CD8+ T cells and reduced expression of PD-L1 after development of resistance, whereas the other group shows high CD8+ T cell infiltration and high expression of PD-L1 in addition to markedly elevated expression of other immune-inhibitory molecules. In two cases, we detect downregulation of type I and II IFN pathways following progression to resistance, which could lead to an impaired anti-tumor immune response. This study thus captures the development of immune checkpoint inhibitor resistance as it progresses and deepens our mechanistic understanding of immunotherapy response in NSCLC.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, 8091, Switzerland
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, 8091, Switzerland
- University of Zurich, Zurich, Switzerland
- University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland
| | - Lena Cords
- University of Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, 8057, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, 8049, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Sabrina Kasser
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, 8091, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Sandra N Freiberger
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Center Zurich, ETH and University of Zurich, Zurich, 8057, Switzerland
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, 8952, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Linda Grob
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, 8952, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Michael Messerli
- University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Alex Soltermann
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
- Pathologie Länggasse, Ittigen, 3063, Switzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Maries van den Broek
- University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, 8057, Switzerland
| | - Bernd Bodenmiller
- University of Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, 8057, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, 8049, Switzerland
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, 8091, Switzerland.
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, 8091, Switzerland.
- University of Zurich, Zurich, Switzerland.
- University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland.
- Clinic of Oncology, Cantonal Hospital Fribourg, Fribourg, 1752, Switzerland.
| |
Collapse
|
18
|
Huang L, Yuan X, Zhao L, Han Q, Yan H, Yuan J, Guan S, Xu X, Dai G, Wang J, Shi Y. Gene signature developed for predicting early relapse and survival in early-stage pancreatic cancer. BJS Open 2023; 7:7169392. [PMID: 37196196 DOI: 10.1093/bjsopen/zrad031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The aim of this study was to construct a predictive signature integrating tumour-mutation- and copy-number-variation-associated features using machine learning to precisely predict early relapse and survival in patients with resected stage I-II pancreatic ductal adenocarcinoma. METHODS Patients with microscopically confirmed stage I-II pancreatic ductal adenocarcinoma undergoing R0 resection at the Chinese PLA General Hospital between March 2015 and December 2016 were enrolled. Whole exosome sequencing was performed, and genes with different mutation or copy number variation statuses between patients with and without relapse within 1 year were identified using bioinformatics analysis. A support vector machine was used to evaluate the importance of the differential gene features and to develop a signature. Signature validation was performed in an independent cohort. The associations of the support vector machine signature and single gene features with disease-free survival and overall survival were assessed. Biological functions of integrated genes were further analysed. RESULTS Overall, 30 and 40 patients were included in the training and validation cohorts, respectively. Some 11 genes with differential patterns were first identified; using a support vector machine, four features (mutations of DNAH9, TP53, and TUBGCP6, and copy number variation of TMEM132E) were further selected and integrated to construct a predictive signature (the support vector machine classifier). In the training cohort, the 1-year disease-free survival rates were 88 per cent (95 per cent c.i. 73 to 100) and 7 per cent (95 per cent c.i. 1 to 47) in the low-support vector machine subgroup and the high-support vector machine subgroup respectively (P < 0.001). Multivariable analyses showed that high support vector machine was significantly and independently associated with both worse overall survival (HR 29.20 (95 per cent c.i. 4.48 to 190.21); P < 0.001) and disease-free survival (HR 72.04 (95 per cent c.i. 6.74 to 769.96); P < 0.001). The area under the curve of the support vector machine signature for 1-year disease-free survival (0.900) was significantly larger than the area under the curve values of the mutations of DNAH9 (0.733; P = 0.039), TP53 (0.767; P = 0.024), and TUBGCP6 (0.733; P = 0.023), the copy number variation of TMEM132E (0.700; P = 0.014), TNM stage (0.567; P = 0.002), and differentiation grade (0.633; P = 0.005), suggesting higher predictive accuracy for prognosis. The value of the signature was further validated in the validation cohort. The four genes included in the support vector machine signature (DNAH9, TUBGCP6, and TMEM132E were novel in pancreatic ductal adenocarcinoma) were significantly associated with the tumour immune microenvironment, G protein-coupled receptor binding and signalling, cell-cell adhesion, etc. CONCLUSION The newly constructed support vector machine signature precisely and powerfully predicted relapse and survival in patients with stage I-II pancreatic ductal adenocarcinoma after R0 resection.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Centre on Ageing of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Yuan
- Organ Transplant Center, Department of Hepatobiliary and Transplantation Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liangchao Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanli Han
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Huan Yan
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jing Yuan
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Shasha Guan
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xiaofeng Xu
- Shanghai Chief Technician Studio (Information & Technology), Shanghai, China
| | - Guanghai Dai
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Shen H, Xie K, Tian Y, Wang X. N6-methyladenosine writer METTL3 accelerates the sepsis-induced myocardial injury by regulating m6A-dependent ferroptosis. Apoptosis 2023; 28:514-524. [PMID: 36645573 DOI: 10.1007/s10495-022-01808-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/17/2023]
Abstract
Ferroptosis is an iron-dependent and phospholipid peroxidation-mediated cell death, which has been identified to be involved in sepsis-induced injury. However, the in-depth molecular mechanisms of N6-methyladenosine (m6A) and ferroptosis on sepsis-induced myocardial injury are still unclear. Here, in the septic myocardial injury, m6A methyltransferase METTL3 level and methylation level high-expressed in lipopolysaccharide (LPS)-induced cardiomyocytes (H9C2). Functionally, METTL3 silencing repressed the ferroptosis phenotype induced by LPS. Mechanistically, METTL3-mediated m6A methylation on solute carrier family 7 member 11 (SLC7A11) empowered its mRNA with high methylation level. Moreover, YTHDF2 directly bound to the m6A modification sites of SLC7A11 to mediate the mRNA degradation. The m6A modified SLC7A11 mRNA was recognized by YTHDF2, which promoted the decay of SLC7A11 mRNA, consequently up-regulating ferroptosis in sepsis-induced myocardial injury. Together, these findings establish a role of METTL3 in the ferroptosis of LPS-induced cardiomyocytes, and provide potential therapeutic target to treat the sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Hao Shen
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, China
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, China
| | - Xiaoye Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, China.
| |
Collapse
|
20
|
Zhang J, Wang C, Huang L, Zhang J. Continuous care needs in patients with cancer receiving chemotherapy during the recent omicron wave of COVID-19 in Shanghai: A qualitative study. Front Psychol 2023; 13:1067238. [PMID: 36687977 PMCID: PMC9845893 DOI: 10.3389/fpsyg.2022.1067238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Aims This study aimed to investigate the care needs, to clarify the factors affecting the quality of homecare, and to provide reference for constructing a homecare system for patients with cancer receiving chemotherapy during the recent omicron wave of COVID-19 in Shanghai. Methods From March to May 2022 when the omicron wave emerged in Shanghai, 50 consecutive patients who received chemotherapy at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, were enrolled, and underwent face-to-face or telephone-based semi-structured interviews regarding continuous care needs. Some of their homecare-givers, caring nurses, and physicians were also interviewed. The Colaizzi method was used for data analysis. Results Fifty patients, 4 homecare-givers, 4 nurses, and 4 physicians were interviewed. Three themes and six subthemes emerged from analysis of the interviews: The first theme was "Disease management needs," including needs for knowledge of managing adverse events associated with chemotherapy, and needs for treatment-related information. Patients expressed most concern about not being able to go to the hospital for blood review and disease evaluation in time due to the outbreak. With the COVID-19 pandemic being ongoing, factors such as pandemic panic, inconvenient medical treatment, and worry about hospital cross-infection might reduce disease management for patients with cancer. The second theme was "Medical needs," including needs for mobile healthcare and needs for medical resources. All interviewees emphasized the importance of mobile healthcare during the COVID-19 pandemic, as access to hospitals was difficult. The third theme was "Spiritual needs," including demands for psychological counseling and intervention, and needs for spiritual care. Patients and homecare-givers commonly lacked a feeling of security and needed communication, encouragement, and reassurance that medical care could be delivered to them, and patients reported that they very much wanted psychological advice. Conclusion For patients with cancer receiving chemotherapy during the COVID-19 pandemic, continuous care is greatly needed. Medical personnel should strengthen the healthcare education for patients and their caregivers during hospitalization, and further improve the patients' information intake rate through Internet-based digital healthcare methods during homecare, to further meet the information needs of patients after discharge from hospital.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Nursing, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caifeng Wang
- School of Nursing, Shanghai Jiaotong University, Shanghai, China
| | - Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Medical Center on Aging of Ruijin Hospital, MCARJH, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Lei Huang,
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Zheng H, Cheng ZJ, Liang B, Wang ZG, Tao YP, Huang SY, Ni JS, Li HF, Yang L, Yuan SX, Wu J, Kawaguchi T, Samant H, Zhou WP, Xiang DM, Yang Y. N 6-Methyladenosine Modification of ANLN Enhances Hepatocellular Carcinoma Bone Metastasis. Int J Biol Sci 2023; 19:1009-1023. [PMID: 36923927 PMCID: PMC10008695 DOI: 10.7150/ijbs.73570] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 12/28/2022] [Indexed: 02/04/2023] Open
Abstract
Bones are categorized as the second most prevalent location of extra-hepatic metastasis in Hepatocellular Carcinoma (HCC), which is linked to an extremely poor prognosis due to limited therapeutic options. N6-methyladenosine (m6A) is a prominent modification involved in HCC, but the exact mechanisms on how m6A modifications induce HCC bone metastases (BM) remain unclear. The key modulators responsible for the abundant m6A RNA modification-induced HCC BM was found to be the METTL3 and YTHDF1. The expression of Anillin actin-binding protein (ANLN) was dramatically higher in HCC with BM tissues, and its messenger RNA (mRNA) stability was enhanced via m6A epitranscriptomic regulation by METTL3 and YTHDF1. High METTL3 and YTHDF1 expression along with nuclear ANLN protein was clinically correlated with BM in HCC patients. Furthermore, HCC BM was attributed to over-expression of nuclear ANLN forming a transcriptional complex with SP1 which enhanced KIF2C transcriptional activity to activate the mTORC1 pathway, therefore increased the expression of RANKL and disproportionated RANKL-OPG expression in bone microenvironment leading to malignant neoplasms invade bone tissue. In addition, inhibition of ANLN m6A modification by DZNeP attenuated HCC BM. This data provides meaningful understanding of the modulation and association of m6A epitranscriptomic-regulated BM in HCC, and moreover, defines potentially valuable therapeutic targets.
Collapse
Affiliation(s)
- Hao Zheng
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Zhang-Jun Cheng
- Department of Hepato-Pancreato-Biliary Centers, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhen-Guang Wang
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Yuan-Ping Tao
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Sheng-Yu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The 10th People's Hospital, Tongji University, Shanghai 200433, China
| | - Jun-Sheng Ni
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Hui-Fen Li
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Le Yang
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Sheng-Xian Yuan
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Jennifer Wu
- Division of Hematology and Medical Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hrishikesh Samant
- Hrishikesh Samant, Division of Gastroenterology and Hepatology, LSU Health Science Center, Shreveport, LA, USA
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Dai-Min Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| |
Collapse
|
22
|
Yuan B, Qin H, Zhang J, Zhang M, Yang Y, Teng X, Yu H, Huang W, Wang Y. m 6A regulators featured by tumor immune microenvironment landscapes and correlated with immunotherapy in non-small cell lung cancer (NSCLC). Front Oncol 2022; 12:1087753. [PMID: 36591468 PMCID: PMC9800857 DOI: 10.3389/fonc.2022.1087753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Recent research has confirmed the critical role that epigenetic factors play in regulating the immune response. Nonetheless, what role m6A methylation modification might play in the immune response of non-small cell lung cancer (NSCLC) remains vague. Methods Herein, the gene expression, copy number variations (CNVs), and somatic mutations of 31 m6A regulators in NSCLC and adjacent control samples from the GEO and TCGA databases were comprehensively explored. Using consensus clustering, m6A modification patterns were identified. Correlations between m6A modification patterns and immune cell infiltration traits in the tumor immune microenvironment (TME) were systematically analyzed. Differentially expressed genes were verified and screened by random forest and cox regression analysis by comparing different m6A modification patterns. Based on the retained gene panel, a risk model was built, and m6Ascore for each sample was calculated. The function of m6Ascore in NSCLC prognosis, tumor somatic mutations, and chemotherapy/immunotherapy response prediction were evaluated. Results Consensus clustering classified all NSCLC samples into two m6A clusters (m6A_clusterA and m6A_clusterB) according to the expression levels of 25 m6A regulator genes. Hierarchical clustering further divides the NSCLC samples into two m6A gene clusters: m6AgeneclusterA and m6AgeneclusterB. A panel of 83 genes was screened from the 194 differentially expressed genes between m6A gene clusters. Based on this, a risk score model was established. m6A modification clusters, m6A gene clusters, and m6Ascore calculated from the risk model were able to predict tumor stages, immune cell infiltration, clinical prognosis, and tumor somatic mutations. NSCLC patients with high m6Ascore have poor drug resistance to chemotherapy drugs (Cisplatin and Gemcitabine) and exhibit considerable therapeutic benefits and favorable clinical responses to anti-PD1 or anti-CTLA4 immunotherapy. Discussion In conclusion, methylation modification patterns mediated by the m6A regulators in individuals play a non-negligible role in prognosis prediction and immunotherapy response, which will facilitate personalized treatment and immunotherapeutic strategies for NSCLC patients in the future.
Collapse
Affiliation(s)
- Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Li G, Fu Q, Liu C, Peng Y, Gong J, Li S, Huang Y, Zhang H. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Front Oncol 2022; 12:1074307. [PMID: 36561529 PMCID: PMC9763625 DOI: 10.3389/fonc.2022.1074307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosinen (m6A) methylation is a frequent RNA methylation modification that is regulated by three proteins: "writers", "erasers", and "readers". The m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Interestingly, recent research has linked m6A RNA modification to the occurrence and development of cancers, such as hepatocellular carcinoma and non-small cell lung cancer. This review summarizes the regulatory role of m6A RNA modification in gastric cancer (GC), including targets, the mechanisms of action, and the potential signaling pathways. Our present findings can facilitate our understanding of the significance of m6A RNA modification in GC.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qiru Fu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Cong Liu
- Editorial Department of Journal of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuxi Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Shilan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yan Huang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| |
Collapse
|
24
|
Wu X, Deng Z, Zhao Q. Immunotherapy improves disease prognosis by affecting the tumor microenvironment: A bibliometric study. Front Immunol 2022; 13:967076. [PMID: 36275770 PMCID: PMC9582136 DOI: 10.3389/fimmu.2022.967076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immunotherapy has shown great potential for the treatment of multiple cancer and has been proven to be closely related to the tumor microenvironment. This article reveals collaborations and interactions among authors, nations, organizations, and periodicals assesses the knowledge base, and discovers hot tendencies and new topics associated with immunotherapy-tumor microenvironment (TME) research. METHODS This article utilized bibliometrics and visual methods to provide a comprehensive overview of immunotherapy-TME research. Our team retrieved the WoSCC for research and reviews associated with immunotherapy and the tumor microenvironment. VOSviewer and Citespace were primarily used for literature measurement and knowledge graph analysis. RESULT All English articles and reviews on cancer immunotherapy effectiveness were collected, and 1,419 academic journals with 53,773 authors from 7,008 institutions in 92 countries/regions were found. Publications associated with immunotherapy-TME research were stably increasing. Frontiers of Immunology (n = 722) published the most papers on immunotherapy-TME, and Cancer Research (n = 6761) was the top co-cited journal. The published journals and co-cited journals focused on cancer and immunology fields. The League of European Research Universities (n = 978), Harvard University (n = 528), and the University of Texas system (n = 520) were the most productive institutions. Yang Liu (n = 34) and Topalian (n = 1978) ranked first among the top 10 scholars and co-cited scholars. Simultaneously, immunotherapy-TME researchers were involved in active collaborations. Elements of TME, the foundation of immunotherapy, and the application of immunotherapy in cancers represented the three principal aspects of immunotherapy-TME research. The latest hot spots are drug resistance, prognosis prediction, efficacy prediction, and m6A. Nanomedicine and m6A may be future hot topics. Future research in immunotherapy-TME may be directed at discovering how m6A modification affects tumor development by altering the tumor microenvironment and exploring how to enhance response or reduce drug resistance to immunotherapy by reversing or mediating the physicochemical properties of the TME. CONCLUSIONS M6A and nanomedicine are also emerging hotspots in time zone diagrams with high centrality, and prognosis prediction using bioinformatics based on the development of prediction technology may be another future research hotspot.
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
25
|
Liu H, Zheng J, Liao A. The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Front Immunol 2022; 13:988130. [PMID: 36225914 PMCID: PMC9549360 DOI: 10.3389/fimmu.2022.988130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
The immune microenvironment at the maternal-fetal interface was determined by the crosstalk between the trophoblast and maternal-derived cells, which dynamically changed during the whole gestation. Trophoblasts act as innate immune cells and dialogue with maternal-derived cells to ensure early embryonic development, depending on the local immune microenvironment. Therefore, dysfunctions in trophoblasts and maternal decidual cells contribute to pregnancy complications, especially recurrent pregnancy loss in early pregnancy. Since many unknown regulatory factors still affect the complex immune status, exploring new potential aspects that could influence early pregnancy is essential. RNA methylation plays an important role in contributing to the transcriptional regulation of various cells. Sufficient studies have shown the crucial roles of N6-methyladenosine (m6A)- and m6A-associated- regulators in embryogenesis during implantation. They are also essential in regulating innate and adaptive immune cells and the immune response and shaping the local and systemic immune microenvironment. However, the function of m6A modifications at the maternal-fetal interface still lacks wide research. This review highlights the critical functions of m6A in early embryonic development, summarizes the reported research on m6A in regulating immune cells and tumor immune microenvironment, and identifies the potential value of m6A modifications in shaping trophoblasts, decidual immune cells, and the microenvironment at the maternal-fetal interface. The m6A modifications are more likely to contribute to embryogenesis, placentation and shape the immune microenvironment at the maternal-fetal interface. Uncovering these crucial regulatory mechanisms could provide novel therapeutic targets for RNA methylation in early pregnancy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| |
Collapse
|
26
|
Meng J, Liu X, Tang S, Liu Y, Zhao C, Zhou Q, Li N, Hou S. METTL3 inhibits inflammation of retinal pigment epithelium cells by regulating NR2F1 in an m6A-dependent manner. Front Immunol 2022; 13:905211. [PMID: 35936005 PMCID: PMC9351451 DOI: 10.3389/fimmu.2022.905211] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
N6-metyladenosine (m6A) RNA methylation has been proven to be involved in diverse biological processes, but its potential roles in the development of lipopolysaccharide (LPS) induced retinal pigment epithelium (RPE) inflammation have not been revealed. In this study, we explored the effects and underlying mechanisms of methyltransferase-like 3 (METTL3) in LPS stimulated RPE cells. Proliferation of METTL3-silenced RPE cells was examined by Cell counting kit-8 (CCK8) and 5-Ethynyl-2´-Deoxyuridine (Edu). Expression of tight junction proteins ZO-1 and Occludin, and secretion of inflammatory factors interleukins (IL)-1, 6 and 8 were detected by Western blotting or Enzyme-linked immunosorbent assay (ELISA). RNA sequencing and methylated RNA immunoprecipitation (MeRIP) sequencing were used to analyze the target gene nuclear receptor subfamily 2 group F member 1 (NR2F1) of METTL3. Our results showed that both human RPE (hRPE) cells and ARPE19 cells exhibited inhibited proliferation, tight junction protein expression, and increased inflammatory factor secretion after METTL3 silencing. Mechanistically, we found that NR2F1, as a METTL3-methylated target gene, inhibits Occludin level and promotes IL-6 secretion of RPE cells in an m6A-dependent manner. Interestingly, NR2F1 deficiency reversed the decreased Occludin expression and increased IL-6 secretion in METTL3-defective RPE cells. In conclusion, our study revealed that METTL3 attenuates RPE cell inflammation by methylating NR2F1, suggesting the critical role of METTL3 in RPE cells.
Collapse
Affiliation(s)
- Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
- Ophthalmology, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
- Ophthalmology, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shiyun Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
- Ophthalmology, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
- Ophthalmology, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
- Ophthalmology, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
- Ophthalmology, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Shengping Hou, ; Na Li,
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
- Ophthalmology, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
- *Correspondence: Shengping Hou, ; Na Li,
| |
Collapse
|
27
|
Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer 2022; 21:148. [PMID: 35843942 PMCID: PMC9290271 DOI: 10.1186/s12943-022-01620-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
The resistance of tumor cells to therapy severely impairs the efficacy of treatment, leading to recurrence and metastasis of various cancers. Clarifying the underlying mechanisms of therapeutic resistance may provide new strategies for overcoming cancer resistance. N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotes, and is involved in the regulation of RNA splicing, translation, transport, degradation, stability and processing, thus affecting several physiological processes and cancer progression. As a novel type of multifunctional non-coding RNAs (ncRNAs), circular RNAs (circRNAs) have been demonstrated to play vital roles in anticancer therapy. Currently, accumulating studies have revealed the mutual regulation of m6A modification and circRNAs, and their interaction can further influence the sensitivity of cancer treatment. In this review, we mainly summarized the recent advances of m6A modification and circRNAs in the modulation of cancer therapeutic resistance, as well as their interplay and potential mechanisms, providing promising insights and future directions in reversal of therapeutic resistance in cancer.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
28
|
Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022; 15:84. [PMID: 35794625 PMCID: PMC9258089 DOI: 10.1186/s13045-022-01304-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME), which is regulated by intrinsic oncogenic mechanisms and epigenetic modifications, has become a research hotspot in recent years. Characteristic features of TME include hypoxia, metabolic dysregulation, and immunosuppression. One of the most common RNA modifications, N6-methyladenosine (m6A) methylation, is widely involved in the regulation of physiological and pathological processes, including tumor development. Compelling evidence indicates that m6A methylation regulates transcription and protein expression through shearing, export, translation, and processing, thereby participating in the dynamic evolution of TME. Specifically, m6A methylation-mediated adaptation to hypoxia, metabolic dysregulation, and phenotypic shift of immune cells synergistically promote the formation of an immunosuppressive TME that supports tumor proliferation and metastasis. In this review, we have focused on the involvement of m6A methylation in the dynamic evolution of tumor-adaptive TME and described the detailed mechanisms linking m6A methylation to change in tumor cell biological functions. In view of the collective data, we advocate treating TME as a complete ecosystem in which components crosstalk with each other to synergistically achieve tumor adaptive changes. Finally, we describe the potential utility of m6A methylation-targeted therapies and tumor immunotherapy in clinical applications and the challenges faced, with the aim of advancing m6A methylation research.
Collapse
|
29
|
Characterization of m6A Methylation Modification Patterns in Colorectal Cancer Determines Prognosis and Tumor Microenvironment Infiltration. J Immunol Res 2022; 2022:8766735. [PMID: 35692505 PMCID: PMC9177296 DOI: 10.1155/2022/8766735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Cumulative studies have suggested that dysregulation of m6A regulators and immunity is highly linked to the prognosis of patients with cancer. However, the potential contribution of m6A modification patterns to the tumor microenvironment (TME) and the therapeutic efficacy of immunotherapy for colorectal cancer (CRC) remain elusive. A comprehensive analysis of the m6A modification profiles of 458 patients with CRC was performed by clustering 21 genes encoding m6A methylation regulators and linking the m6A modification pattern with TME characteristics. Using principal component analysis (PCA), a risk model was constructed to quantify individual m6A modification patterns in patients with CRC. The results indicated that the expression profiles and genetic mutations of 21 genes encoding m6A methylation regulators in CRC were characterized by a high degree of heterogeneity. Three m6A clusters had significant differences in prognosis, m6A modification patterns, and TME characteristics. Furthermore, a risk model, termed m6Ascore, was developed by PCA to quality m6A methylation patterns at an individual level. The m6Ascore could stratify patients into high- and low-m6Ascore groups. Further analyses demonstrated that the m6Ascore had a good predictive performance for overall survival and clinical efficacy of immunotherapy in patients with CRC. Finally, the predictive value of the model was validated by external cohorts. In conclusion, the comprehensive characterization of m6A methylation modification patterns might contribute to our understanding of the TME in CRC and the development of personalized antitumor immunotherapy in the future.
Collapse
|
30
|
Ren S, Zhang Y, Yang X, Li X, Zheng Y, Liu Y, Zhang X. N6-methyladenine- induced LINC00667 promoted breast cancer progression through m6A/KIAA1429 positive feedback loop. Bioengineered 2022; 13:13462-13473. [PMID: 36700472 PMCID: PMC9275968 DOI: 10.1080/21655979.2022.2077893] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Increasing evidence supports that N6-methyladenine (m6A) and long noncoding RNAs (lncRNAs) both act as master regulators involved in breast cancer (BC) tumorigenesis at epigenetic modification level. Here, our research tries to unveil the interaction of m6A and lncRNAs on BC progression and explore the underlying regulatory mechanism. In the current study, we found that LINC00667 was m6A-modified lncRNA, which was up-regulated upon the overexpression of KIAA1429. The high expression of LINC00667 was correlated with the prognosis of BC patients. Bio-functional assays indicated that LINC00667 promoted the proliferation and migration of BC cells. Mechanistic assays illustrated that KIAA1429 targeted the m6A modification site of LINC00667 and enhanced its mRNA stability. Moreover, LINC00667 positively regulated the KIAA1429 via sponging miR-556-5p, forming a KIAA1429/m6A/LINC00667/miR-556-5p feedback loop. Collectively, the central findings of our study suggest that KIAA1429-induced LINC00667 exerted its functions as an oncogene in BC progression through m6A-dependent feedback loop.
Collapse
Affiliation(s)
- Saiyu Ren
- School of Medicine, South China University of Technology, Guangzhou, China,Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Yuxing Zhang
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Xiaodong Yang
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Xue Li
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Yuexin Zheng
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Yun Liu
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Xiliang Zhang
- School of Medicine, South China University of Technology, Guangzhou, China,Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China,CONTACT Xiliang Zhang Department of General Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, No. 6, Fucheng Road, Beijing, 100048, China
| |
Collapse
|