1
|
Liu G, Gao Y, Cheng Y, Wang W, Li X, Wu Y, Gao F, Zhou ZW, Sun Y, Jiang Y, Yang N, Shu Y, Sun L. Host genetic variation governs PCV2 susceptibility through CXCL13 and ELK1-mediated immune regulation. Int J Biol Macromol 2025; 310:143170. [PMID: 40267997 DOI: 10.1016/j.ijbiomac.2025.143170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Pathogenic viruses can drive evolutionary adaptations in host biology, leading to diversified immune responses and variable susceptibility among individuals. This study examined how genetic variation in host regulatory regions impacts susceptibility to viral infections. Utilizing a porcine model, we identified the single nucleotide polymorphism (SNP) g.-1014G>A as a critical determinant of CXCL13 expression levels following PCV2 viral exposure. Structural analyses showed that the transcription factor ELK1 specifically recognized and bound to the g.-1014G allele, but not to the g.-1014A allele, through essential residues such as Arg65. This allele-specific binding led to differential CXCL13 expression, with the G allele associated with increased resistance to viral infection. Functional studies demonstrated that CXCL13 played a multifaceted role in antiviral immunity, including the inhibition of viral replication, modulation of immune-related pathways, and attenuation of virus-induced apoptosis. The CXCL13-mediated response involved the activation of the PI3K/Akt pathway, enhancing cell survival during viral challenges. This SNP-dependent regulation of a host factor represented a novel mechanism underlying genetic differences in viral susceptibility, with potential implications for developing broadly applicable antiviral strategies.
Collapse
Affiliation(s)
- Gen Liu
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yizhen Gao
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yijun Cheng
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenlei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Xiang Li
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin 300308, China
| | - Zhong-Wei Zhou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| | - Na Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuelong Shu
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China.
| | - Litao Sun
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Rudraprasad D, Nirmal J, Mishra DK, Joseph J. RNA-Sequencing Reveals the Modulation of the NLRP3 Inflammasome by miR-223-3p in Extracellular Vesicles in Bacterial Endophthalmitis. Invest Ophthalmol Vis Sci 2025; 66:53. [PMID: 40249602 PMCID: PMC12013669 DOI: 10.1167/iovs.66.4.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Purpose Extracellular vesicles (EVs) are critical mediators of cell-cell communication via transfer of molecular cargo including miRNAs and regulate transcription in various physiological and pathological conditions. This study aimed to investigate the role of EV-derived-microRNAs (EV-miRNAs) in bacterial endophthalmitis, focusing on their regulatory impact on inflammation and host immune responses. Methods C57BL/6 mice were infected with Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) to induce endophthalmitis. EVs were isolated and characterized followed by miRNA profiling to identify differentially expressed miRNAs. The miRNet platform was used to elucidate potential interactions between exosomal miRNA and retinal mRNA, followed by in vivo and in vitro validation of key miRNAs and their target genes. Additionally, EVs were extracted from vitreous fluid samples of patients with endophthalmitis, and miR-223-3p and NLRP3 expressions were assessed by qPCR. Results Bacterial endophthalmitis led to pronounced neutrophil infiltration in the retina of mice. The miRNA profiling identified 651 differentially expressed miRNAs in P. aeruginosa and 29 in S. aureus, with 10 miRNAs shared between both infections. The miR-223-3p, miR-467a-3p, and miR-467d-3p emerged as major regulators of inflammatory pathways, targeting genes such as NLRP3, CXCL5, and IKKα. In patient vitreous samples, miR-223-3p was upregulated in culture-positive samples, correlating with reduced NLRP3 expression. The miRNAs, particularly miR-223-3p, play a critical role in modulating the immune response in bacterial endophthalmitis, largely through the regulation of the NLRP3 inflammasome. Conclusions The findings suggest that miR-223-3p could serve as biomarkers in culture-negative cases and therapeutic targets for managing inflammation in bacterial endophthalmitis, potentially guiding treatments aimed at preserving retinal integrity.
Collapse
Affiliation(s)
- Dhanwini Rudraprasad
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayabalan Nirmal
- Department of Pharmacy, BITS Pilani, Hyderabad, Telangana, India
| | | | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Rahman MS, Kim TH, Barrier BF, Spencer TE, Kelleher AM, Jeong JW. FOXA2 loss results in an increase of endometriosis development and LIF reveals a therapeutic effect for endometriosis. FASEB J 2025; 39:e70436. [PMID: 40022603 PMCID: PMC11926334 DOI: 10.1096/fj.202403182r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Endometriosis, characterized by the growth of uterine-like tissue outside the uterus, causes chronic pain and infertility. Current diagnostic and therapeutic strategies have notable limitations, including delayed diagnosis and adverse effects. The transcription factor forkhead box A2 (FOXA2), which is exclusively expressed in the uterine glandular epithelium, regulates key genes involved in endometrial proliferation, differentiation, fertility, and hormone response. While FOXA2 expression is reduced in the endometrial tissue of women with endometriosis, its pathophysiological role in the disease is not well understood. In this study, we report that endometriosis significantly reduced FOXA2 expression in the eutopic endometrium of mice with endometriosis compared to sham controls, accompanied by decreased expression of its downstream gene, CXCL15. To evaluate the effect of FOXA2 loss in endometriosis, we surgically induced endometriosis by transplanting control Rosa26mTmG/+ or Pgrcre/+Foxa2f/fRosa26mTmG/+ (Foxa2d/dRosa26mTmG/+) endometrial tissue into the peritoneal cavity of mice. The number and weight of ectopic lesions were significantly increased in the mice with Foxa2d/dRosa26mTmG/+ ectopic lesions compared to controls. Furthermore, progesterone receptor expression was significantly reduced in the endometrial epithelium from mice with Foxa2d/dRosa26mTmG/+ ectopic lesions compared to mice with control ectopic lesions. Importantly, treatment with leukemia inhibitory factor (LIF), a cytokine regulated by FOXA2, significantly reduced ectopic lesion formation in Foxa2d/dRosa26mTmG/+ endometriosis mice compared to vehicle-treated mice. This study demonstrates that FOXA2 loss results in an increase in endometriosis incidence and that treatment with LIF offers a novel promising therapeutic approach for endometriosis.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Breton F Barrier
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Thomas E Spencer
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
4
|
Zhong Q, Hao H, Li S, Ning Y, Li H, Hu X, McMasters KM, Yan J, Ding C. B cell c-Maf signaling promotes tumor progression in animal models of pancreatic cancer and melanoma. J Immunother Cancer 2024; 12:e009861. [PMID: 39608978 PMCID: PMC11603694 DOI: 10.1136/jitc-2024-009861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The role of B cells in antitumor immunity remains controversial, with studies suggesting the protumor and antitumor activity. This controversy may be due to the heterogeneity in B cell populations, as the balance among the subtypes may impact tumor progression. The immunosuppressive regulatory B cells (Breg) release interleukin 10 (IL-10) but only represent a minor population. Additionally, tumor-specific antibodies (Abs) also exhibit antitumor and protumor functions dependent on the Ab isotype. Transcription factor c-Maf has been suggested to contribute to the regulation of IL-10 in Breg, but the role of B cell c-Maf signaling in antitumor immunity and regulating Ab responses remains unknown. METHODS Conditional B cell c-Maf knockout (KO) and control mice were used to establish a KPC pancreatic cancer model and B16.F10 melanoma model. Tumor progression was evaluated. B cell and T cell phenotypes were determined by flow cytometry, mass cytometry, and cytokine/chemokine profiling. Differentially expressed genes in B cells were examined by using RNA sequencing (RNA-seq). Peripheral blood samples were collected from healthy donors and patients with melanoma for B cell phenotyping. RESULTS Compared with B cells from the spleen and lymph nodes (LN), B cells in the pancreas exhibited significantly less follicular phenotype and higher IL-10 production in naïve mice. c-Maf deficiency resulted in a significant reduction of CD9+ IL-10-producing Breg in the pancreas. Pancreatic ductal adenocarcinoma (PDAC) progression resulted in the accumulation of circulating B cells with the follicular phenotype and less IL-10 production in the pancreas. Notably, B cell c-Maf deficiency delayed PDAC tumor progression and resulted in proinflammatory B cells. Further, tumor volume reduction and increased effective T cells in the tumor-draining LN were observed in B cell c-Maf KO mice in the B16.F10 melanoma model. RNA-seq analysis of isolated B cells revealed that B cell c-Maf signaling modulates immunoglobulin-associated genes and tumor-specific Ab production. We furthermore demonstrated c-Maf-positive B cell subsets and an increase of IL-10-producing B cells after incubation with IL-4 and CD40L in the peripheral blood of patients with melanoma. CONCLUSION Our study highlights that B cell c-Maf signaling drives tumor progression through the modulation of Breg, inflammatory responses, and tumor-specific Ab responses.
Collapse
Affiliation(s)
- Qian Zhong
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Shu Li
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yongling Ning
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hong Li
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoling Hu
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kelly M McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Chuanlin Ding
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Wei Y, Zhao X, Li L. The Effect of Circulating Inflammatory Proteins on Endometriosis: A Mendelian Randomization Study. Immunotargets Ther 2024; 13:585-593. [PMID: 39503011 PMCID: PMC11537175 DOI: 10.2147/itt.s486139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Background Endometriosis is a complex gynecological condition in which endometrial fragments are implanted outside the uterus, causing pain and infertility. Although immune mediators play a vital role in endometriosis, their exact etiology remains elusive. Using Mendelian randomization (MR), this study aimed to assess the causal relationship between inflammatory proteins and endometriosis. Methods Genetic variants associated with inflammatory proteins were filtered from a genome-wide protein quantitative trait locus study under stringent thresholds. These variants were used as instrumental variables (IVs) to evaluate the causal effects of these inflammatory proteins on endometriosis. A two-sample MR analysis was performed with endometriosis from the UK Biobank as the outcome, and a sensitivity analysis was performed to mitigate potential confounding factors. Analyses were replicated in an independent endometriosis cohort from the FinnGen, followed by a meta-analysis of MR results from both cohorts. Finally, we assessed the causality between inflammatory proteins and the endometriosis subtypes. Results Independent MR analysis revealed that the genetically higher levels of CXCL5 were linked to a lower chance of having endometriosis. The causal link remained significant in the meta-analysis. Furthermore, the causality of CXCL5 expression has been identified in ovarian and pelvic peritoneal endometriosis. Conclusion Our MR analysis indicated that CXCL5 was associated with a decreased risk of endometriosis, suggesting that CXCL5 might have a protective effect against endometriosis. This enhances our understanding of the involvement of chemokines in endometriosis pathology and provides insights for future studies to explore the detailed mechanisms underlying CXCL5 in endometriosis.
Collapse
Affiliation(s)
- Yunfang Wei
- Department of Obstetrics & Gynecology, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, People’s Republic of China
| | - Xianlei Zhao
- School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Linxia Li
- Department of Obstetrics & Gynecology, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, People’s Republic of China
| |
Collapse
|
6
|
Wang S, Chen H, Li Z, Xu G, Bao X. Hyperbaric oxygen-induced acute lung injury: A mouse model study on pathogenic characteristics and recovery dynamics. Front Physiol 2024; 15:1474933. [PMID: 39493864 PMCID: PMC11527661 DOI: 10.3389/fphys.2024.1474933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Oxygen is an essential substance for the maintenance of human life. It is also widely used in clinical and diving medicine. Although oxygen is crucial for survival, too much oxygen can be harmful. Excessive oxygen inhalation in a short period of time can lead to injury, and the lung is one of the main target organs. Acute lung injury (ALI) induced by hyperbaric oxygen (HBO) is notably more severe than that caused by normobaric oxygen, yet systematic research on such injury and its regression is scarce. In this study, two independent experiments were designed. In the first experiment, mice were exposed to 2 atmospheres absolute (ATA), ≥95% oxygen for 2, 4, 6, and 8 h. Changes in lung histopathology, inflammation and expression of chemokines, alveolar-capillary barrier, and 8-OHdG were detected before and after the exposure. In the second experiment, these parameters were measured at 0 h, 12 h, and 24 h following 6 h of exposure to 2 ATA of ≥95% oxygen. Research indicates that ALI induced by HBO is characterized histologically by alveolar expansion, atelectasis, inflammatory cell infiltration, and hemorrhage. At 2 ATA, significant changes in the alveolar-capillary barrier were observed after more than 95% oxygen exposure for 4 h, as evidenced by increased Evans blue (EB) extravasation (p = 0.0200). After 6 h of HBO exposure, lung tissue pathology scores, 8-OHdG levels, and inflammatory and chemotactic factors (such as Il6, CCL2, CCL3, CXCL5, and CXCL10), intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion molecule 1 (VCAM1) were significantly elevated. Compared to lung injury caused by normobaric oxygen, the onset time of injury was significantly shortened. Additionally, it was observed that these markers continued to increase after leaving the HBO environment, peaking at 12 h and starting to recover at 24 h, indicating that the peak of inflammatory lung injury occurs within 12 h post-exposure, with recovery beginning at 24 h. This contradicts the common belief that lung injury is alleviated upon removal from a high-oxygen environment. However, EB levels, which reflect damage to the alveolar-capillary barrier, and VE-Cadherin (VE-Cad), tight junction protein 1 (ZO-1), ICAM1, and VCAM1 remained significantly altered 24 h after leaving the HBO environment. This suggests that the alveolar-capillary barrier is the most sensitive and slowest recovering part of the lung injury induced by HBO. These findings can provide insights into the pathogenesis and progression of lung injury caused by HBO and offer references for identifying corresponding intervention targets.
Collapse
Affiliation(s)
- Shu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Hong Chen
- Cadre Diagnosis and Treatment Department, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Zhi Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangxu Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Bao
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| |
Collapse
|
7
|
Noguchi K, Inai T, Kuwana R. Chitinase 3-Like 1 and C-X-C motif chemokine ligand 5 proteins and the hair cycle. Arch Dermatol Res 2024; 316:523. [PMID: 39150635 DOI: 10.1007/s00403-024-03151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 08/17/2024]
Abstract
Dermal papilla cells (DPCs) exhibit self-recovery ability, which may be involved in hair growth. Therefore, we tested whether DPCs subjected to temporary growth-inhibiting stress (testosterone, 17β-estradiol, mitomycin C, or undernutrition) treatments exhibit self-recovery behavior that can activate hair follicle growth, and examined the changes in cell proliferation capacity and gene expression. Related proteins were identified and their relationships with the hair cycle was examined using a mouse model. Recovery-period DPCs (i.e., from day 3 after loading) were subjected to microarray analysis to detect genetic variations common to each stress treatment. Co-culture of recovery-period DPCs and outer root sheath cells (ORSCs) confirmed the promotion of ORSC proliferation, suggesting that the activation of hair follicle growth is promoted via signal transduction. Chitinase 3-like 1 (CHI3L1) and C-X-C motif chemokine 5 (CXCL5) exhibited ORSC proliferation-promoting effects. Measurement of protein content in the skin during each phase of the hair cycle in mice revealed that CHI3L1 and CXCL5 secretion increased immediately after anagen transition. In a hair-loss mouse model treated with testosterone or 17β-estradiol, CHI3L1 and CXCL5 secretion was lower in treated telogen skin than in untreated skin. Our results suggest that CHI3L1 and CXCL5 secreted by recovery-state DPCs promote hair growth.
Collapse
Affiliation(s)
- Kazuma Noguchi
- Department of Research and Development, Fuji Sangyo Co., Ltd., Tamura-cho, Kagawa, Marugame-shi, 763-8603, Japan.
| | - Takanori Inai
- Department of Research and Development, Fuji Sangyo Co., Ltd., Tamura-cho, Kagawa, Marugame-shi, 763-8603, Japan
| | - Ryuichiro Kuwana
- Kuwana Dermatology Clinic, Ozucho, Kochi-shi, Kochi, 780-0915, Japan
| |
Collapse
|
8
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 PMCID: PMC11353115 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
9
|
Rumney RMH, Pomeroy J, Górecki DC. Investigating the Involvement of C-X-C Motif Chemokine 5 and P2X7 Purinoceptor in Ectopic Calcification in Mouse Models of Duchenne Muscular Dystrophy. J Cell Biochem 2024; 125:e30617. [PMID: 38924558 DOI: 10.1002/jcb.30617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Ectopic calcification of myofibers is an early pathogenic feature in patients and animal models of Duchenne muscular dystrophy (DMD). In previous studies using the Dmdmdx-βgeo mouse model, we found that the dystrophin-null phenotype exacerbates this abnormality and that mineralised myofibers are surrounded by macrophages. Furthermore, the P2X7 purinoceptor, functioning in immune cells offers protection against dystrophic calcification. In the present study, by exploring transcriptomic data from Dmdmdx mice, we hypothesised these effects to be mediated by C-X-C motif chemokine 5 (CXCL5) downstream of P2X7 activation. We found that CXCL5 is upregulated in the quadriceps muscles of Dmdmdx-βgeo mice compared to wild-type controls. In contrast, at the cell level, dystrophic (SC5) skeletal muscle cells secreted less CXCL5 chemokine than wild-type (IMO) controls. Although release from IMO cells was increased by P2X7 activation, this could not explain the elevated CXCL5 levels observed in dystrophic muscle tissue. Instead, we found that CXCL5 is released by dystrophin-null macrophages in response to P2X7 activation, suggesting that macrophages are the source of CXCL5 in dystrophic muscles. The effects of CXCL5 upon mineralisation were investigated using the Alizarin Red assay to quantify calcium deposition in vitro. In basal (low phosphate) media, CXCL5 increased calcification in IMO but not SC5 myoblasts. However, in cultures treated in high phosphate media, to mimic dysregulated phosphate metabolism occurring in DMD, CXCL5 decreased calcification in both IMO and SC5 cells. These data indicate that CXCL5 is part of a homoeostatic mechanism regulating intracellular calcium, that CXCL5 can be released by macrophages in response to the extracellular ATP damage-associated signal, and that CXCL5 can be part of a damage response to protect against ectopic calcification. This mechanism is affected by DMD gene mutations.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Chemokine CXCL5/metabolism
- Chemokine CXCL5/genetics
- Disease Models, Animal
- Receptors, Purinergic P2X7/metabolism
- Receptors, Purinergic P2X7/genetics
- Calcinosis/metabolism
- Calcinosis/pathology
- Calcinosis/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mice, Inbred mdx
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Knockout
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Joanna Pomeroy
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
10
|
Hurme P, Kähkönen M, Rückert B, Vahlberg T, Turunen R, Vuorinen T, Akdis M, Akdis CA, Jartti T. Disease Severity and Cytokine Expression in the Rhinovirus-Induced First Wheezing Episode. Viruses 2024; 16:924. [PMID: 38932217 PMCID: PMC11209381 DOI: 10.3390/v16060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Wheezing children infected with rhinovirus (RV) have a markedly increased risk of subsequently developing recurrencies and asthma. No previous studies have assessed the association between cytokine response and the severity of acute illness in the first wheezing episode in children infected with RV. Forty-seven children treated both as inpatients and as outpatients infected with RV only, aged 3-23 months, with severe first wheezing episodes were recruited. During acute illness, peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with anti-CD3/anti-CD28 in vitro. A multiplex ELISA was used to quantitatively identify 56 different cytokines. The mean age of the children was 17 months, 74% were males, 79% were hospitalized, and 33% were sensitized. In adjusted analyses, the inpatient group was characterized by decreased expressions of interferon gamma (IFN-γ), interleukin 10 (IL-10), macrophage inflammatory protein 1 alpha (MIP-1α), RANTES (CCL5), and tumor necrosis factor-alpha (TNF-α) and an increased expression of ENA-78 (CXCL5) compared to the outpatient group. The cytokine response profiles from the PBMCs were different between the inpatient and outpatient groups. Our results support that firmly controlled interplay between pro-inflammatory and anti-inflammatory responses are required during acute viral infection to absolve the initial infection leading, to less severe illness.
Collapse
Affiliation(s)
- Pekka Hurme
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Miisa Kähkönen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), 7265 Davos, Switzerland
| | - Tero Vahlberg
- Department of Biostatistics, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Riitta Turunen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20520 Turku, Finland
- New Children’s Hospital, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Tytti Vuorinen
- Institute of Biomedicine, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), 7265 Davos, Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), 7265 Davos, Switzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20520 Turku, Finland
| |
Collapse
|
11
|
Zidovec-Lepej S, Bodulić K, Bogdanic M, Gorenec L, Savic V, Grgic I, Sabadi D, Santini M, Radmanic Matotek L, Kucinar J, Barbic L, Zmak L, Ferenc T, Stevanovic V, Antolasic L, Milasincic L, Hruskar Z, Vujica Ferenc M, Vilibic-Cavlek T. Proinflammatory Chemokine Levels in Cerebrospinal Fluid of Patients with Neuroinvasive Flavivirus Infections. Microorganisms 2024; 12:657. [PMID: 38674602 PMCID: PMC11052399 DOI: 10.3390/microorganisms12040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) are the most important neuroinvasive arboviruses detected in Europe. In this study, we analyzed cerebrospinal fluid (CSF) concentrations of 12 proinflammatory chemokines (CCL2, CCL3, CCL4, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL8, CXCL9, CXCL10, and CXCL11) in 77 patients with neuroinvasive diseases (NIDs). Flavivirus infection was confirmed in 62 patients (TBEV and WNV in 31 patients each), while in 15 patients the etiology of NID was not determined (NDE). Similar patterns of high-level expression of chemokines regulating monocyte/macrophage responses (CCL2), neutrophil recruitment (CXCL1 and CXCL8), and interferon-inducible chemoattractants for leukocytes (CXCL10 and CXCL11) have been observed in WNV and TBEV groups. None of the tested chemokines significantly differed between patients with TBEV or WNV. Concentrations of CCL17, CCL20, CXCL5, CXCL10, and CXCL11 were significantly lower in both WNV and TBEV groups compared to NID NDE patients. The logistic regression model showed that CSF concentrations of CXCL11, CXCL5, and CXCL10 could potentially be used for the classification of patients into the WNV or TBEV group versus groups with other NIDs. This study identified, for the first time, similar patterns of CSF chemokine expression in WNV and TBEV infections, suggesting common immunopathogenic mechanisms in neuroinvasive flavivirus infections that should be further evaluated.
Collapse
Affiliation(s)
- Snjezana Zidovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Kristian Bodulić
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Lana Gorenec
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ivana Grgic
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Dario Sabadi
- Department of Infectious Diseases, Clinical Hospital Center Osijek, 31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Santini
- Department for Infections in Immunocompromised Patients, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Leona Radmanic Matotek
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia; (S.Z.-L.); (L.G.); (I.G.); (L.R.M.)
| | - Jasmina Kucinar
- Department of Serology and Immunology, Istria County Institute of Public Health, 52100 Pula, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.)
| | - Ljiljana Zmak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Microbiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Thomas Ferenc
- Department of Diagnostic and Interventional Radiology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.)
| | - Ljiljana Antolasic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Ljiljana Milasincic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
| | - Mateja Vujica Ferenc
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (M.B.); (L.A.); (L.M.); (Z.H.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
12
|
Marcos-Villar L, Perdiguero B, Anthiya S, Borrajo ML, Lou G, Franceschini L, Esteban I, Sánchez-Cordón PJ, Zamora C, Sorzano CÓS, Jordá L, Codó L, Gelpí JL, Sisteré-Oró M, Meyerhans A, Thielemans K, Martínez-Jiménez F, López-Bigas N, García F, Alonso MJ, Plana M, Esteban M, Gómez CE. Modulating the immune response to SARS-CoV-2 by different nanocarriers delivering an mRNA expressing trimeric RBD of the spike protein: COVARNA Consortium. NPJ Vaccines 2024; 9:53. [PMID: 38448450 PMCID: PMC10918104 DOI: 10.1038/s41541-024-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 03/08/2024] Open
Abstract
Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gustavo Lou
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ignasi Esteban
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pedro J Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis Jordá
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Laia Codó
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Josep L Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria López-Bigas
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - María J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Plana
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
13
|
Hurme P, Sahla R, Rückert B, Vahlberg T, Turunen R, Vuorinen T, Akdis M, Söderlund‐Venermo M, Akdis C, Jartti T. Human bocavirus 1 coinfection is associated with decreased cytokine expression in the rhinovirus-induced first wheezing episode in children. Clin Transl Allergy 2023; 13:e12311. [PMID: 38006383 PMCID: PMC10642552 DOI: 10.1002/clt2.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Rhinovirus (RV)-induced first wheezing episodes in children are associated with a markedly increased risk of asthma. Previous studies have suggested that human bocavirus 1 (HBoV1) may modify RV-induced immune responses in young children. We investigated cytokine profiles of sole RV- and dual RV-HBoV1-induced first wheezing episodes, and their association with severity and prognosis. METHODS Fifty-two children infected with only RV and nine children infected with dual RV-HBoV1, aged 3-23 months, with severe first wheezing episodes were recruited. At acute illness and 2 weeks later, peripheral blood mononuclear cells were isolated, and stimulated with anti-CD3/anti-CD28 in vitro. Multiplex ELISA was used to quantitatively identify 56 different cytokines at both study points. Patients were prospectively followed for 4 years. RESULTS The mean age of the children was 14.3 months, and 30% were sensitized. During the acute illness, the adjusted analyses revealed a decrease in the expression of IL-1b, MIP-1b, Regulated upon activation, normal T cell expressed and presumably secreted (CCL5), TNF-a, TARC, and ENA-78 in the RV-HBoV1 group compared with the RV group. In the convalescence phase, the RV-HBoV1 group was characterized by decreased expression of Fractalkine, MCP-3, and IL-8 compared to the RV group. Furthermore, the hospitalization time was associated with the virus group and cytokine response (interaction p < 0.05), signifying that increased levels of epidermal growth factor and MIP-1b were related with a shorter duration of hospitalization in the RV-HBoV1 coinfection group but not in the RV group. CONCLUSIONS Different cytokine response profiles were detected between the RV and the RV-HBoV1 groups. Our results show the idea that RV-induced immune responses may be suppressed by HBoV1.
Collapse
Affiliation(s)
- Pekka Hurme
- Department of Pediatrics and Adolescent MedicineTurku University HospitalUniversity of TurkuTurkuFinland
| | - Reetta Sahla
- Department of Pediatrics and Adolescent MedicineTurku University HospitalUniversity of TurkuTurkuFinland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichChristine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Tero Vahlberg
- Department of BiostatisticsUniversity of TurkuTurkuFinland
| | - Riitta Turunen
- Department of Pediatrics and Adolescent MedicineTurku University HospitalUniversity of TurkuTurkuFinland
- New Children's HospitalHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Tytti Vuorinen
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of Clinical MicrobiologyTurku University HospitalTurkuFinland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichChristine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | | | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichChristine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent MedicineTurku University HospitalUniversity of TurkuTurkuFinland
- Research Unit of Clinical MedicineMedical Research CenterUniversity of OuluOuluFinland
- Department of Pediatrics and Adolescent MedicineOulu University HospitalOuluFinland
| |
Collapse
|
14
|
Chen C, Chang TT, Chen JW. Mechanistic role of CXCL5 in cardiovascular disease, diabetes mellitus, and kidney disease. Life Sci 2023; 330:122018. [PMID: 37567498 DOI: 10.1016/j.lfs.2023.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Chemokines, by modulating inflammation process, could contribute to the development of cardiovascular disease, diabetes mellitus (DM), and kidney disease. Chemokine CXC motif ligand 5 (CXCL5) is one of the inducible chemokines that may be involved in various inflammatory diseases. Given the bidirectional promiscuity characteristics of the chemokine system, the mechanistic roles of CXCL5 should be further explored in each specific disease. In this article, we sought to review the recent evidence on the differential effects of CXCL5 and their potential mechanisms in cardiovascular disease, DM, and renal disease individually. Future study is still required to verify if CXCL5 could be a novel therapeutic target in these diseases.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Department of Medicine and Department of Research, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
15
|
Wang W, Spurgeon ME, Pope A, McGregor S, Ward-Shaw E, Gronski E, Lambert PF. Stress keratin 17 and estrogen support viral persistence and modulate the immune environment during cervicovaginal murine papillomavirus infection. Proc Natl Acad Sci U S A 2023; 120:e2214225120. [PMID: 36917668 PMCID: PMC10041145 DOI: 10.1073/pnas.2214225120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
16
|
Schönfelder J, Seibold T, Morawe M, Sroka R, Schneider N, Cai J, Golomejic J, Schütte L, Armacki M, Huber-Lang M, Kalbitz M, Seufferlein T, Eiseler T. Endothelial Protein kinase D1 is a major regulator of post-traumatic hyperinflammation. Front Immunol 2023; 14:1093022. [PMID: 36936923 PMCID: PMC10017463 DOI: 10.3389/fimmu.2023.1093022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Trauma is a major cause of death worldwide. The post-traumatic immune response culminates in the release of pro-inflammatory mediators, translating in the infiltration of neutrophils (PMNs) at injury sites. The extent of this inflammation is determined by multiple factors, such as PMN adhesion to the endothelium, transendothelial migration, endothelial barrier integrity as well as PMN swarming, mass infiltration and activation. This process is initiated by secondary lipid mediators, such as leukotriene B4 (LTB4). We here provide evidence that Protein kinase D1 (PRKD1) in endothelial cells is implicated in all these processes. Endothelial PRKD1 is activated by pro-inflammatory stimuli and amplifies PMN-mediated inflammation by upregulation of cytokine and chemokines as well as adhesion molecules, such as ICAM-1, VCAM-1 and E-selectin. This induces enhanced PMN adhesion and trans-migration. PRKD1 activation also destabilizes endothelial VE-cadherin adhesion complexes and thus the endothelial barrier, fostering PMN infiltration. We even describe a yet unrecognized PRKD1-dependant mechanism to induce biosynthesis of the PMN-swarming mediator LTB4 directed via intercellular communication through small extracellular vesicles (sEVs) and enhanced CXCL8 secretion from activated endothelial cells. These endothelial sEVs transfer the LTB4 biosynthesis enzyme LTA4 hydrolase (LTA4H) to prime PMNs, while initiating biosynthesis also requires additional signals, like CXCL8. We further demonstrate the respective LTA4H-positive sEVs in the serum of polytrauma patients, peaking 12 h post injury. Therefore, PRKD1 is a key regulator in the coordinated communication of the endothelium with PMNs and a vital signaling node during post-traumatic inflammation.
Collapse
Affiliation(s)
| | - Tanja Seibold
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Mareen Morawe
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Robert Sroka
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Nora Schneider
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Jierui Cai
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Josip Golomejic
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Lena Schütte
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic, and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
- *Correspondence: Tim Eiseler, ; Thomas Seufferlein,
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
- *Correspondence: Tim Eiseler, ; Thomas Seufferlein,
| |
Collapse
|
17
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
18
|
Hurme P, Komulainen M, Tulkki M, Leino A, Rückert B, Turunen R, Vuorinen T, Akdis M, Akdis CA, Jartti T. Cytokine expression in rhinovirus- vs. respiratory syncytial virus-induced first wheezing episode and its relation to clinical course. Front Immunol 2022; 13:1044621. [PMID: 36451824 PMCID: PMC9702984 DOI: 10.3389/fimmu.2022.1044621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 09/26/2023] Open
Abstract
Rhinovirus (RV) and respiratory syncytial virus (RSV) are common causes of bronchiolitis. Unlike an RSV etiology, an RV etiology is associated with a markedly increased risk of asthma. We investigated the cytokine profiles of RV- and RSV-induced first wheezing episode and their correlation with prognosis. We recruited 52 sole RV- and 11 sole RSV-affected children with a severe first wheezing episode. Peripheral blood mononuclear cells (PBMCs) were isolated during acute illness and 2 weeks later and stimulated in vitro with anti-CD3/anti-CD28. Culture medium samples were analyzed for 56 different cytokines by multiplex ELISA. Recurrences were prospectively followed for 4 years. In adjusted analyses, the cytokine response from PBMCs in the RV group was characterized by decreased expression of interleukin 1 receptor antagonist (IL-1RA), interleukin 1 beta (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) and increased expression of eosinophil chemotactic protein 2 (eotaxin-2), thymus- and activation-regulated chemokine (TARC), and epithelial-derived neutrophil-activating peptide 78 (ENA-78) in the acute phase and increased expression of fractalkine in the convalescent phase compared to those in the RSV group. An analysis of the change in cytokine expression between study points revealed an increased expression of fractalkine and IL-1β and decreased expression of I-309 (CCL1) and TARC in the RV group compared to those in the RSV group.. Considering hospitalization time, a significant non-adjusted group × cytokine interaction was observed in the levels of interferon gamma (IFN-γ), macrophage-derived chemokine (MDC), IL-1RA, and vascular endothelial growth factor (VEGF), indicating that a higher expression of cytokine was associated with shorter hospitalization time in the RSV group but not in the RV group. A significant interaction was also found in interleukin 6 (IL-6), but the cytokine response was not associated with hospitalization time in the RSV or RV group. In the RV group, increased expression of I-309 (CCL1) and TARC was associated with fewer relapses within 2 months, and decreased expression of interleukin 13 (IL-13) and increased expression of I-309 (CCL1) were associated with less relapses within 12 months. Differences in cytokine response from PBMCs were observed between RV- and RSV-induced first severe wheezing episode. Our findings also reveal new biomarkers for short- and medium-term prognosis in first-time wheezing children infected with RV or RSV.
Collapse
Affiliation(s)
- Pekka Hurme
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Miisa Komulainen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Marleena Tulkki
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Annamari Leino
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Riitta Turunen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tytti Vuorinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
19
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|