1
|
de Wit AS, Bianchi F, van den Bogaart G. Antigen presentation of post-translationally modified peptides in major histocompatibility complexes. Immunol Cell Biol 2025; 103:161-177. [PMID: 39609891 PMCID: PMC11792782 DOI: 10.1111/imcb.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
T cells of the adaptive immune system recognize pathogens and malignantly transformed cells through a process called antigen presentation. During this process, peptides are displayed on major histocompatibility complex (MHC) class I and II molecules. Self-reactive T cells are typically removed or suppressed during T-cell development and through peripheral tolerance mechanisms, ensuring that only T cells recognizing peptides that are either absent or present in low abundance under normal conditions remain. This selective process allows T cells to respond to peptides derived from foreign proteins while ignoring those from self-proteins. However, T cells can also respond to peptides derived from proteins that have undergone post-translational modifications (PTMs). Over 200 different PTMs have been described, and while they are essential for protein function, localization and stability, their dysregulation is often associated with disease conditions. PTMs can affect the proteolytic processing of proteins and prevent MHC binding, thereby changing the repertoire of peptides presented on MHC molecules. However, it is also increasingly evident that many peptides presented on MHC molecules carry PTMs, which can alter their immunogenicity. As a result, the presentation of post-translationally modified peptides by MHC molecules plays a significant role in various diseases, as well as autoimmune disorders and allergies. This review will provide an overview of the impact of PTMs on antigen presentation and their implications for immune recognition and disease.
Collapse
Affiliation(s)
- Alexine S de Wit
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Goodson H, Kawahara R, Fehring J, Purcell AW, Croft NP, Thaysen-Andersen M. α-Mannosylated HLA-II glycopeptide antigens dominate the immunopeptidome of immortalised cells and tumour tissues. Glycobiology 2024; 34:cwae057. [PMID: 39088576 PMCID: PMC11441994 DOI: 10.1093/glycob/cwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024] Open
Abstract
Immunopeptides are cell surface-located protein fragments that aid our immune system to recognise and respond to pathogenic insult and malignant transformation. In this two-part communication, we firstly summarise and reflect on our recent discovery documenting that MHC-II-bound immunopeptides from immortalised cell lines prevalently carry N-glycans that differ from the cellular glycoproteome (Goodson, Front Immunol, 2023). These findings are important as immunopeptide glycosylation remains poorly understood in immunosurveillance. The study also opened up new technical and biological questions that we address in the second part of this communication. Our study highlighted that the performance of the search engines used to detect glycosylated immunopeptides from LC-MS/MS data remains untested and, importantly, that little biochemical in vivo evidence is available to document the nature of glycopeptide antigens in tumour tissues. To this end, we compared the N-glycosylated MHC-II-bound immunopeptides that were reported from tumour tissues of 14 meningioma patients in the MSFragger-HLA-Glyco database (Bedran, Nat Commun, 2023) to those we identified with the commercial Byonic software. Encouragingly, the search engines produced similar outputs supporting that N-glycosylated MHC-II-bound immunopeptides are prevalent in meningioma tumour tissues. Consistent also with in vitro findings, the tissue-derived MHC-II-bound immunopeptides were found to predominantly carry hyper-processed (paucimannosidic- and chitobiose core-type) and hypo-processed (oligomannosidic-type) N-glycans that varied in prevalence and distribution between patients. Taken together, evidence is emerging suggesting that α-mannosidic glycoepitopes abundantly decorate MHC-II-bound immunopeptides presented in both immortalised cells and tumour tissues warranting further research into their functional roles in immunosurveillance.
Collapse
Affiliation(s)
- Hayley Goodson
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, NSW-2109, Macquarie Park, Sydney, Australia
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| | - Joshua Fehring
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, NSW-2109, Macquarie Park, Sydney, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| |
Collapse
|
3
|
Pongcharoen S, Kaewsringam N, Somaparn P, Roytrakul S, Maneerat Y, Pintha K, Topanurak S. Immunopeptidomics in the cancer immunotherapy era. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:801-817. [PMID: 39280250 PMCID: PMC11390293 DOI: 10.37349/etat.2024.00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Cancer is the primary cause of death worldwide, and conventional treatments are painful, complicated, and have negative effects on healthy cells. However, cancer immunotherapy has emerged as a promising alternative. Principle of cancer immunotherapy is the re-activation of T-cell to combat the tumor that presents the peptide antigen on major histocompatibility complex (MHC). Those peptide antigens are identified with the set of omics technology, proteomics, genomics, and bioinformatics, which referred to immunopeptidomics. Indeed, immunopeptidomics can identify the neoantigens that are very useful for cancer immunotherapies. This review explored the use of immunopeptidomics for various immunotherapies, i.e., peptide-based vaccines, immune checkpoint inhibitors, oncolytic viruses, and chimeric antigen receptor T-cell. We also discussed how the diversity of neoantigens allows for the discovery of novel antigenic peptides while post-translationally modified peptides diversify the overall peptides binding to MHC or so-called MHC ligandome. The development of immunopeptidomics is keeping up-to-date and very active, particularly for clinical application. Immunopeptidomics is expected to be fast, accurate and reliable for the application for cancer immunotherapies.
Collapse
Affiliation(s)
- Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Nongphanga Kaewsringam
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poorichaya Somaparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Ramakrishnan P. O-GlcNAcylation and immune cell signaling: A review of known and a preview of unknown. J Biol Chem 2024; 300:107349. [PMID: 38718861 PMCID: PMC11180344 DOI: 10.1016/j.jbc.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024] Open
Abstract
The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA; University Hospitals-Cleveland Medical Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Tedeschi V, Paldino G, Alba J, Molteni E, Paladini F, Scrivo R, Congia M, Cauli A, Caccavale R, Paroli M, Di Franco M, Tuosto L, Sorrentino R, D’Abramo M, Fiorillo MT. ERAP1 and ERAP2 Haplotypes Influence Suboptimal HLA-B*27:05-Restricted Anti-Viral CD8+ T Cell Responses Cross-Reactive to Self-Epitopes. Int J Mol Sci 2023; 24:13335. [PMID: 37686141 PMCID: PMC10488187 DOI: 10.3390/ijms241713335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Giorgia Paldino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Josephine Alba
- Department of Biology, University of Fribourg, Chemin du Musée, 1700 Fribourg, Switzerland;
| | - Emanuele Molteni
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rossana Scrivo
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Mattia Congia
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Alberto Cauli
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Rosalba Caccavale
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Marino Paroli
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Manuela Di Franco
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rosa Sorrentino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
6
|
Bedran G, Polasky DA, Hsiao Y, Yu F, da Veiga Leprevost F, Alfaro JA, Cieslik M, Nesvizhskii AI. Unraveling the glycosylated immunopeptidome with HLA-Glyco. Nat Commun 2023; 14:3461. [PMID: 37308510 PMCID: PMC10258777 DOI: 10.1038/s41467-023-39270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Recent interest in targeted therapies has been sparked by the study of MHC-associated peptides (MAPs) that undergo post-translational modifications (PTMs), particularly glycosylation. In this study, we introduce a fast computational workflow that merges the MSFragger-Glyco search algorithm with a false discovery rate control for glycopeptide analysis from mass spectrometry-based immunopeptidome data. By analyzing eight large-scale publicly available studies, we find that glycosylated MAPs are predominantly presented by MHC class II. Here, we present HLA-Glyco, a comprehensive resource containing over 3,400 human leukocyte antigen (HLA) class II N-glycopeptides from 1,049 distinct protein glycosylation sites. This resource provides valuable insights, including high levels of truncated glycans, conserved HLA-binding cores, and differences in glycosylation positional specificity between HLA allele groups. We integrate the workflow within the FragPipe computational platform and provide HLA-Glyco as a free web resource. Overall, our work provides a valuable tool and resource to aid the nascent field of glyco-immunopeptidomics.
Collapse
Affiliation(s)
- Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Hsiao
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Javier A Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Omenn GS, Lane L, Overall CM, Pineau C, Packer NH, Cristea IM, Lindskog C, Weintraub ST, Orchard S, Roehrl MH, Nice E, Liu S, Bandeira N, Chen YJ, Guo T, Aebersold R, Moritz RL, Deutsch EW. The 2022 Report on the Human Proteome from the HUPO Human Proteome Project. J Proteome Res 2023; 22:1024-1042. [PMID: 36318223 PMCID: PMC10081950 DOI: 10.1021/acs.jproteome.2c00498] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".
Collapse
Affiliation(s)
- Gilbert S. Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and University of Geneva, 1015 Lausanne, Switzerland
| | | | - Charles Pineau
- French Institute of Health and Medical Research, 35042 RENNES Cedex, France
| | - Nicolle H. Packer
- Macquarie University, Sydney, NSW 2109, Australia
- Griffith University’s Institute for Glycomics, Sydney, NSW 2109, Australia
| | | | | | - Susan T. Weintraub
- University of Texas Health Science Center-San Antonio, San Antonio, Texas 78229-3900, United States
| | - Sandra Orchard
- EMBL-EBI, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Michael H.A. Roehrl
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States
| | | | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, California 92093, United States
| | - Yu-Ju Chen
- National Taiwan University, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Tiannan Guo
- Westlake University Guomics Laboratory of Big Proteomic Data, Hangzhou 310024, Zhejiang Province, China
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology in ETH Zurich, 8092 Zurich, Switzerland
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
8
|
Mukherjee S, Jankevics A, Busch F, Lubeck M, Zou Y, Kruppa G, Heck AJR, Scheltema RA, Reiding KR. Oxonium Ion-Guided Optimization of Ion Mobility-Assisted Glycoproteomics on the timsTOF Pro. Mol Cell Proteomics 2023; 22:100486. [PMID: 36549589 PMCID: PMC9853368 DOI: 10.1016/j.mcpro.2022.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spatial separation of ions in the gas phase, providing information about their size as collisional cross-sections, can readily be achieved through ion mobility. The timsTOF Pro (Bruker Daltonics) series combines a trapped ion mobility device with a quadrupole, collision cell, and a time-of-flight analyzer to enable the analysis of ions at great speed. Here, we show that the timsTOF Pro is capable of physically separating N-glycopeptides from nonmodified peptides and producing high-quality fragmentation spectra, both beneficial for glycoproteomics analyses of complex samples. The glycan moieties enlarge the size of glycopeptides compared with nonmodified peptides, yielding a clear cluster in the mobilogram that, next to increased dynamic range from the physical separation of glycopeptides and nonmodified peptides, can be used to make an effective selection filter for directing the mass spectrometer to analytes of interest. We designed an approach where we (1) focused on a region of interest in the ion mobilogram and (2) applied stepped collision energies to obtain informative glycopeptide tandem mass spectra on the timsTOF Pro:glyco-polygon-stepped collision energy-parallel accumulation serial fragmentation. This method was applied to selected glycoproteins, human plasma- and neutrophil-derived glycopeptides. We show that the achieved physical separation in the region of interest allows for improved extraction of information from the samples, even at shorter liquid chromatography gradients of 15 min. We validated our approach on human neutrophil and plasma samples of known makeup, in which we captured the anticipated glycan heterogeneity (paucimannose, phosphomannose, high mannose, hybrid and complex glycans) from plasma and neutrophil samples at the expected abundances. As the method is compatible with off-the-shelve data acquisition routines and data analysis software, it can readily be applied by any laboratory with a timsTOF Pro and is reproducible as demonstrated by a comparison between two laboratories.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | | | - Yang Zou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Gary Kruppa
- Bruker Daltonik GmbH & Co KG, Bremen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
9
|
León-Letelier RA, Katayama H, Hanash S. Mining the Immunopeptidome for Antigenic Peptides in Cancer. Cancers (Basel) 2022; 14:4968. [PMID: 36291752 PMCID: PMC9599891 DOI: 10.3390/cancers14204968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although harnessing the immune system for cancer therapy has shown success, response to immunotherapy has been limited. The immunopeptidome of cancer cells presents an opportunity to discover novel antigens for immunotherapy applications. These neoantigens bind to MHC class I and class II molecules. Remarkably, the immunopeptidome encompasses protein post-translation modifications (PTMs) that may not be evident from genome or transcriptome profiling. A case in point is citrullination, which has been demonstrated to induce a strong immune response. In this review, we cover how the immunopeptidome, with a special focus on PTMs, can be utilized to identify cancer-specific antigens for immunotherapeutic applications.
Collapse
Affiliation(s)
| | | | - Sam Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|