1
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
2
|
Akkari L, Amit I, Bronte V, Fridlender ZG, Gabrilovich DI, Ginhoux F, Hedrick CC, Ostrand-Rosenberg S. Defining myeloid-derived suppressor cells. Nat Rev Immunol 2024; 24:850-857. [PMID: 38969773 DOI: 10.1038/s41577-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France.
- Paris-Saclay University, Paris, France.
| | - Catherine C Hedrick
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Wiencke JK, Nissen E, Koestler DC, Tamaki SJ, Tamaki CM, Hansen HM, Warrier G, Hadad S, McCoy L, Rice T, Clarke J, Taylor JW, Salas LA, Christensen BC, Kelsey KT, Butler R, Molinaro AM. Enrichment of a neutrophil-like monocyte transcriptional state in glioblastoma myeloid suppressor cells. RESEARCH SQUARE 2023:rs.3.rs-3793353. [PMID: 38234734 PMCID: PMC10793488 DOI: 10.21203/rs.3.rs-3793353/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Glioblastomas (GBM) are lethal central nervous system cancers associated with tumor and systemic immunosuppression. Heterogeneous monocyte myeloid-derived suppressor cells (M-MDSC) are implicated in the altered immune response in GBM, but M-MDSC ontogeny and definitive phenotypic markers are unknown. Using single-cell transcriptomics, we revealed heterogeneity in blood M-MDSC from GBM subjects and an enrichment in a transcriptional state reminiscent of neutrophil-like monocytes (NeuMo), a newly described pathway of monopoiesis in mice. Human NeuMo gene expression and Neu-like deconvolution fraction algorithms were created to quantitate the enrichment of this transcriptional state in GBM subjects. NeuMo populations were also observed in M-MDSCs from lung and head and neck cancer subjects. Dexamethasone (DEX) and prednisone exposures increased the usage of Neu-like states, which were inversely associated with tumor purity and survival in isocitrate dehydrogenase wildtype (IDH WT) gliomas. Anti-inflammatory ZC3HA12/Regnase-1 transcripts were highly correlated with NeuMo expression in tumors and in blood M-MDSC from GBM, lung, and head and neck cancer subjects. Additional novel transcripts of immune-modulating proteins were identified. Collectively, these findings provide a framework for understanding the heterogeneity of M-MDSCs in GBM as cells with different clonal histories and may reshape approaches to study and therapeutically target these cells.
Collapse
Affiliation(s)
- J K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Stan J Tamaki
- Parnassus Flow Cytometry CoLab, University of California San Francisco, San Francisco, CA 94143-0511, USA
| | - Courtney M Tamaki
- Parnassus Flow Cytometry CoLab, University of California San Francisco, San Francisco, CA 94143-0511, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Gayathri Warrier
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Sara Hadad
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Jennifer Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Rondi Butler
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Foster JB, Koptyra MP, Bagley SJ. Recent Developments in Blood Biomarkers in Neuro-oncology. Curr Neurol Neurosci Rep 2023; 23:857-867. [PMID: 37943477 DOI: 10.1007/s11910-023-01321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE OF REVIEW Given the invasive and high-risk nature of brain surgery, the need for non-invasive biomarkers obtained from the peripheral blood is greatest in tumors of the central nervous system (CNS). In this comprehensive review, we highlight recent advances in blood biomarker development for adult and pediatric brain tumors. RECENT FINDINGS We summarize recent blood biomarker development for CNS tumors across multiple key analytes, including peripheral blood mononuclear cells, cell-free DNA, cell-free RNA, proteomics, circulating tumor cells, and tumor-educated platelets. We also discuss methods for enhancing blood biomarker detection through transient opening of the blood-brain barrier. Although blood-based biomarkers are not yet used in routine neuro-oncology practice, this field is advancing rapidly and holds great promise for improved and non-invasive management of patients with brain tumors. Prospective and adequately powered studies are needed to confirm the clinical utility of any blood biomarker prior to widespread clinical implementation.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mateusz P Koptyra
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen J Bagley
- Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, 10th Floor Perelman Center, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Bokil AA, Le Boulvais Børkja M, Wolowczyk C, Lamsal A, Prestvik WS, Nonstad U, Pettersen K, Andersen SB, Bofin AM, Bjørkøy G, Hak S, Giambelluca MS. Discovery of a new marker to identify myeloid cells associated with metastatic breast tumours. Cancer Cell Int 2023; 23:279. [PMID: 37980483 PMCID: PMC10656772 DOI: 10.1186/s12935-023-03136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Myeloid cells play an essential role in cancer metastasis. The phenotypic diversity of these cells during cancer development has attracted great interest; however, their functional heterogeneity and plasticity have limited their role as prognostic markers and therapeutic targets. METHODS To identify markers associated with myeloid cells in metastatic tumours, we compared transcriptomic data from immune cells sorted from metastatic and non-metastatic mammary tumours grown in BALB/cJ mice. To assess the translational relevance of our in vivo findings, we assessed human breast cancer biopsies and evaluated the association between arginase 1 protein expression in breast cancer tissues with tumour characteristics and patient outcomes. RESULTS Among the differentially expressed genes, arginase 1 (ARG1) showed a unique expression pattern in tumour-infiltrating myeloid cells that correlated with the metastatic capacity of the tumour. Even though ARG1-positive cells were found almost exclusively inside the metastatic tumour, ARG1 protein was also present in the plasma. In human breast cancer biopsies, the presence of ARG1-positive cells was strongly correlated with high-grade proliferating tumours, poor prognosis, and low survival. CONCLUSION Our findings highlight the potential use of ARG1-positive myeloid cells as an independent prognostic marker to evaluate the risk of metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Ansooya A Bokil
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mathieu Le Boulvais Børkja
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Camilla Wolowczyk
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Apsana Lamsal
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche S Prestvik
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Unni Nonstad
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Pettersen
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sonja B Andersen
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Miriam S Giambelluca
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Clinical Medicine, Faculty of Health Science, UiT- The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
6
|
Musca B, Russo MG, Tushe A, Magri S, Battaggia G, Pinton L, Bonaudo C, Della Puppa A, Mandruzzato S. The immune cell landscape of glioblastoma patients highlights a myeloid-enriched and immune suppressed microenvironment compared to metastatic brain tumors. Front Immunol 2023; 14:1236824. [PMID: 37936683 PMCID: PMC10626453 DOI: 10.3389/fimmu.2023.1236824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brain metastases (BrM), which commonly arise in patients with melanoma, breast cancer and lung cancer, are associated with a poor clinical prognosis. In this context, the tumor microenvironment (TME) plays an important role since it either promotes or inhibits tumor progression. Our previous studies have characterized the immunosuppressive microenvironment of glioblastoma (GBM). The aim of this study is to compare the immune profiles of BrM and GBM in order to identify potential differences that may be exploited in their differential treatment. Methods Tumor and/or blood samples were taken from 20 BrM patients and 19 GBM patients. Multi-parametric flow cytometry was used to evaluate myeloid and lymphoid cells, as well as the expression of immune checkpoints in the TME and blood. In selected cases, the immunosuppressive ability of sorted myeloid cells was tested, and the ex vivo proliferation of myeloid, lymphoid and tumor cell populations was analyzed. Results High frequencies of myeloid cells dominated both the BrM and GBM landscapes, but a higher presence of tumor-associated macrophages was observed in GBM, while BrM were characterized by a significant presence of tumor-infiltrating lymphocytes. Exhaustion markers were highly expressed in all T cells from both primary and metastatic brain tumors. Ex vivo analysis of the cell cycle of a single sample of a BrM and of a GBM revealed subsets of proliferating tumor cells and blood-derived macrophages, but quiescent resident microglial cells and few proliferating lymphocytes. Macrophages sorted from a single lung BrM exhibited a strong immunosuppressive activity, as previously shown for primary GBM. Finally, a significant expansion of some myeloid cell subsets was observed in the blood of both GBM and BrM patients. Discussion Our results define the main characteristics of the immune profile of BrM and GBM, which are distinguished by different levels of immunosuppressive myeloid cells and lymphocytes devoid of effector function. Understanding the role of the different cells in establishing the metastatic setting is critical for improving the therapeutic efficacy of new targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Beatrice Musca
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV – IRCCS, Padova, Italy
| | - Maria Giovanna Russo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV – IRCCS, Padova, Italy
| | - Ada Tushe
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Greta Battaggia
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV – IRCCS, Padova, Italy
| | - Laura Pinton
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV – IRCCS, Padova, Italy
| | - Camilla Bonaudo
- Neurosurgery, Department of NEUROFARBA, University Hospital of Careggi, University of Florence, Florence, Italy
| | - Alessandro Della Puppa
- Neurosurgery, Department of NEUROFARBA, University Hospital of Careggi, University of Florence, Florence, Italy
| | - Susanna Mandruzzato
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV – IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Myeloid cell heterogeneity in the tumor microenvironment and therapeutic implications for childhood central nervous system (CNS) tumors. J Neuroimmunol 2023; 374:578009. [PMID: 36508930 DOI: 10.1016/j.jneuroim.2022.578009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022]
Abstract
Central nervous system (CNS) tumors are the most common type of solid tumors in children and the leading cause of cancer deaths in ages 0-14. Recent advances in the field of tumor biology and immunology have underscored the disparate nature of these distinct CNS tumor types. In this review, we briefly introduce pediatric CNS tumors and discuss various components of the TME, with a particular focus on myeloid cells. Although most studies regarding myeloid cells have been done on adult CNS tumors and animal models, we discuss the role of myeloid cell heterogeneity in pediatric CNS tumors and describe how these cells may contribute to tumorigenesis and treatment response. In addition, we present studies within the last 5 years that highlight human CNS tumors, the utility of various murine CNS tumor models, and the latest multi-dimensional tools that can be leveraged to investigate myeloid cell infiltration in young adults and children diagnosed with select CNS tumors.
Collapse
|
8
|
Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol 2023; 11:1098482. [PMID: 36923251 PMCID: PMC10009693 DOI: 10.3389/fcell.2023.1098482] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant of astrocytomas mainly involving the cerebral hemispheres and the cerebral cortex. It is one of the fatal and refractory solid tumors, with a 5-year survival rate of merely 5% among the adults. IL6/JAK/STAT3 is an important signaling pathway involved in the pathogenesis and progression of GBM. The expression of STAT3 in GBM tissues is substantially higher than that of normal brain cells. The abnormal activation of STAT3 renders the tumor microenvironment of GBM immunosuppression. Besides, blocking the STAT3 pathway can effectively inhibit the growth and metastasis of GBM. On this basis, inhibition of STAT3 may be a new therapeutic approach for GBM, and the combination of STAT3 targeted therapy and conventional therapies may improve the current status of GBM treatment. This review summarized the roles of STAT3 in the pathogenesis of GBM and the feasibility of STAT3 for GBM target therapy.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
9
|
Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma. Int J Mol Sci 2022; 23:ijms23116312. [PMID: 35682991 PMCID: PMC9181495 DOI: 10.3390/ijms23116312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.
Collapse
|
10
|
Mensali N, Inderberg EM. Emerging Biomarkers for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:1940. [PMID: 35454848 PMCID: PMC9024739 DOI: 10.3390/cancers14081940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 12/02/2022] Open
Abstract
Immunotherapy has shown clinical benefits in several solid malignancies-in particular, melanoma and non-small cell lung cancer. However, in other solid tumours such as glioblastoma (GBM), the response to immunotherapy has been more variable, and except for anti-PD-1 for patients with microsatellite instable (MSI)+ cancers, no immunotherapy is currently approved for GBM patients. GBM is the most common and most aggressive brain cancer with a very poor prognosis and a median overall survival of 15 months. A few prognostic biomarkers have been identified and are used to some extent, but apart from MSI, no biomarkers are used for patient stratification for treatments other than the standard of care, which was established 15 years ago. Around 25% of new treatments investigated in GBM are immunotherapies. Recent studies indicate that the use of integrated and validated immune correlates predicting the response and guiding treatments could improve the efficacy of immunotherapy in GBM. In this review, we will give an overview of the current status of immunotherapy and biomarkers in use in GBM with the main challenges of treatment in this disease. We will also discuss emerging biomarkers that could be used in future immunotherapy strategies for patient stratification and potentially improved treatment efficacy.
Collapse
Affiliation(s)
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway;
| |
Collapse
|