1
|
Słomiński B, Gładysz J, Skrzypkowska M, Ryba-Stanisławowska M, Nowicki D, Szalewska-Pałasz A, Myśliwiec M. Black Death protective gene mutation shows ambiguous role in type 1 diabetes, its complications, and common viral infections. Diabetes Res Clin Pract 2025; 225:112287. [PMID: 40449626 DOI: 10.1016/j.diabres.2025.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/06/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
AIMS Because ERAP2 is implicated in infections and autoimmune diseases, we hypothesize that the rs9939609 ERAP2 polymorphism, with allele frequencies observed in human samples from both before and after the Black Death, may influence type 1 diabetes (T1D), its complications, and common viral infections. METHODS We examined 400 patients with T1D and 300 healthy, age-matched controls. The analysis focused on the ERAP2 polymorphism in relation to T1D complications and comorbidities, the history of common childhood viral infections, and the inflammatory status of T1D patients. RESULTS The T allele is linked to a decreased risk of developing diabetes, modulates its complications in a differential manner, and has diverse effects on the inflammatory status of T1D patients. Our results also indicate statistically significant differences in the correlation of monocyte subsets, the quantitative status of CD4 + CD25high FOXP3+ regulatory T cells, and susceptibility to common childhood viral infections between different ERAP2 variants. CONCLUSIONS Our findings suggest that the rs2549794 ERAP2 polymorphism may serve as a genetic marker for susceptibility to T1D complications and comorbidities, further emphasizing the role of ERAP2-mediated pathways in their etiology. These results also provide new evidence supporting the hypothesis of balancing selection at this locus, driven by autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Julia Gładysz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Chair & Clinics of Paediatrics, Diabetology and Endocrinology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| |
Collapse
|
2
|
Saulle I, Vitalyos AV, D’Agate D, Clerici M, Biasin M. Unveiling the impact of ERAP1 and ERAP2 on migration, angiogenesis and ER stress response. Front Cell Dev Biol 2025; 13:1564649. [PMID: 40226591 PMCID: PMC11985534 DOI: 10.3389/fcell.2025.1564649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Recent studies have investigated the key roles exerted by ERAP1 and ERAP2 in maintaining cellular homeostasis, emphasizing their functions beyond traditional antigen processing and presentation. In particular, genetic variants of these IFNγ-inducible aminopeptidases significantly impact critical cellular pathways, including migration, angiogenesis, and autophagy, which are essential in immune responses and disease processes. ERAP1's influence on endothelial cell migration and VEGF-driven angiogenesis, along with ERAP2's role in managing stress-induced autophagy via the UPR, highlights their importance in cellular adaptation to stress and disease outcomes, including autoimmune diseases, cancer progression, and infections. By presenting recent insights into ERAP1 and ERAP2 functions, this review underscores their potential as therapeutic targets in immune regulation and cellular stress-response pathways.
Collapse
Affiliation(s)
- Irma Saulle
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
| | | | - Daniel D’Agate
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Mara Biasin
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| |
Collapse
|
3
|
Souza‐Silva IM, Carregari VC, Steckelings UM, Verano‐Braga T. Phosphoproteomics for studying signaling pathways evoked by hormones of the renin-angiotensin system: A source of untapped potential. Acta Physiol (Oxf) 2025; 241:e14280. [PMID: 39821680 PMCID: PMC11737475 DOI: 10.1111/apha.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT1 receptor (AT1R), and in contrast the protective axis, which includes the receptors Mas, AT2R and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease. On the other hand, therapeutic benefits can be achieved by selectively activating protective receptors and their associated signaling pathways. Traditionally, robust "hypothesis-driven" methods like Western blotting have built a solid knowledge foundation on RAS signaling. In this review, we introduce untargeted mass spectrometry-based phosphoproteomics, a "hypothesis-generating approach", to explore RAS signaling pathways. This technology enables the unbiased discovery of phosphorylation events, offering insights into previously unknown signaling mechanisms. We review the existing studies which used phosphoproteomics to study RAS signaling and discuss potential future applications of phosphoproteomics in RAS research including advantages and limitations. Ultimately, phosphoproteomics represents a so far underused tool for deepening our understanding of RAS signaling and unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Igor Maciel Souza‐Silva
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Victor Corasolla Carregari
- Laboratório de Neuroproteômica, Instituto de BiologiaUniversidade de CampinasSão PauloBrazil
- Department of Biochemistry and Molecular Biology, Protein Research GroupUniversity of Southern DenmarkOdense MDenmark
| | - U. Muscha Steckelings
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Thiago Verano‐Braga
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Instituto Nacional de Ciência e Tecnologia Em Nanobiofarmacêutica (INCT‐Nanobiofar)Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
4
|
Saulle I, Limanaqi F, Garziano M, Murno ML, Artusa V, Strizzi S, Giovarelli M, Schulte C, Aiello J, Clerici M, Vanetti C, Biasin M. Impact of endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) on neutrophil cellular functions. Front Cell Dev Biol 2025; 12:1506216. [PMID: 39839670 PMCID: PMC11747162 DOI: 10.3389/fcell.2024.1506216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level. Materials and methods In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy. Results We observed that following stimulation rhERAPs: i) were internalized by neutrophils; ii) triggered their activation as witnessed by increased percentage of MAC-1+CD66b+ expressing neutrophils, cytokine expression/release (IL-1β, IL-8, CCL2, TNFα, IFNγ, MIP-1β) and granule enzyme secretion (myeloperoxidase, Elastase); iii) increased neutrophil migration capacity; iv) increased autophagy and phagocytosis activity; v) reduced ROS accumulation and did not influence oxygen consumption rate. Conclusion Our study provides novel insights into the biological role of ERAPs, and indicates that extracellular ERAPs, contribute to shaping neutrophil homeostasis by promoting survival and tolerance in response to stress-related inflammation. This information could contribute to a better understanding of the biological bases governing immune responses, and to designing ERAP-based therapeutic protocols to control neutrophil-associated human diseases.
Collapse
Affiliation(s)
- Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Fiona Limanaqi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Micaela Garziano
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Maria Luisa Murno
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Valentina Artusa
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Sergio Strizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Matteo Giovarelli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Carsten Schulte
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Jacopo Aiello
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Claudia Vanetti
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Zamolodchikova TS, Tolpygo SM, Kotov AV. Insulin in the regulation of the renin-angiotensin system: a new perspective on the mechanism of insulin resistance and diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1293221. [PMID: 38323106 PMCID: PMC10844507 DOI: 10.3389/fendo.2024.1293221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
|
6
|
Nowak I, Bochen P. The Antigen-Processing Pathway via Major Histocompatibility Complex I as a New Perspective in the Diagnosis and Treatment of Endometriosis. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0008. [PMID: 38478380 DOI: 10.2478/aite-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
Endometriosis is a debilitating gynecological disease defined as the presence of endometrium-like epithelium and/or stroma outside the uterine cavity. The most commonly affected sites are the pelvic peritoneum, ovaries, uterosacral ligaments, and the rectovaginal septum. The aberrant tissue responds to hormonal stimulation, undergoing cyclical growth and shedding similar to appropriately located endometrial tissue in the uterus. Common symptoms of endometriosis are painful periods and ovulation, severe pelvic cramping, heavy bleeding, pain during sex, urination and bowel pain, bleeding, and pain between periods. Numerous theories have been proposed to explain the pathogenesis of endometriosis. Sampson's theory of retrograde menstruation is considered to be the most accepted. This theory assumes that endometriosis occurs due to the retrograde flow of endometrial cells through the fallopian tubes during menstruation. However, it has been shown that this process takes place in 90% of women, while endometriosis is diagnosed in only 10% of them. This means that there must be a mechanism that blocks the immune system from removing endometrial cells and interferes with its function, leading to implantation of the ectopic endometrium and the formation of lesions. In this review, we consider the contribution of components of the Major Histocompatibility Complex (MHC)-I-mediated antigen-processing pathway, such as the ERAP, TAP, LMP, LNPEP, and tapasin, to the susceptibility, onset, and severity of endometriosis. These elements can induce significant changes in MHC-I-bound peptidomes that may influence the response of immune cells to ectopic endometrial cells.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Patrycja Bochen
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Raja A, Kuiper JJW. Evolutionary immuno-genetics of endoplasmic reticulum aminopeptidase II (ERAP2). Genes Immun 2023; 24:295-302. [PMID: 37925533 PMCID: PMC10721543 DOI: 10.1038/s41435-023-00225-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a proteolytic enzyme involved in adaptive immunity. The ERAP2 gene is highly polymorphic and encodes haplotypes that confer resistance against lethal infectious diseases, but also increase the risk for autoimmune disorders. Identifying how ERAP2 influences susceptibility to these traits requires an understanding of the selective pressures that shaped and maintained allelic variation throughout human evolution. Our review discusses the genetic regulation of haplotypes and diversity in naturally occurring ERAP2 allotypes in the global population. We outline how these ERAP2 haplotypes evolved during human history and highlight the presence of Neanderthal DNA sequences in ERAP2 of modern humans. Recent evidence suggests that human adaptation during the last ~10,000 years and historic pandemics left a significant mark on the ERAP2 gene that determines susceptibility to infectious and inflammatory diseases today.
Collapse
Affiliation(s)
- Aroosha Raja
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Saad MA, Abdul-Sattar AB, Abdelal IT, Baraka A. Shedding Light on the Role of ERAP1 in Axial Spondyloarthritis. Cureus 2023; 15:e48806. [PMID: 38024089 PMCID: PMC10645460 DOI: 10.7759/cureus.48806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Spondyloarthritis (SpA) is a multifactorial chronic inflammatory disease affecting the axial skeleton (axSpA) and/or peripheral joints (p-SpA) and entheses. The disease's pathogenesis depends on genetic, immunological, mechanical, and environmental factors. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme that shapes the peptide repertoire presented by major histocompatibility complex (MHC) class I molecules. Genome-wide association studies (GWAS) have identified different single nucleotide polymorphisms (SNPs) in ERAP1 that are associated with several autoimmune diseases, including axSpA. Therefore, a deeper understanding of the ERAP1 role in axSpA could make it a potential therapeutic target for this disease and offer greater insight into its impact on the immune system. Here, we review the biological functions and structure of ERAP1, discuss ERAP1 polymorphisms and their association with axSpA, highlight the interaction between ERAP1 and human leukocyte antigen (HLA)-B27, and review the association between ERAP1 SNPs and axSpA clinical parameters.
Collapse
Affiliation(s)
- Mohamed A Saad
- Rheumatology and Rehabilitation, Physical Medicine and Rehabilitation (PMR) Hospital, Kuwait, KWT
| | - Amal B Abdul-Sattar
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ibrahim T Abdelal
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ahmed Baraka
- Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, EGY
| |
Collapse
|
9
|
Tedeschi V, Paldino G, Alba J, Molteni E, Paladini F, Scrivo R, Congia M, Cauli A, Caccavale R, Paroli M, Di Franco M, Tuosto L, Sorrentino R, D’Abramo M, Fiorillo MT. ERAP1 and ERAP2 Haplotypes Influence Suboptimal HLA-B*27:05-Restricted Anti-Viral CD8+ T Cell Responses Cross-Reactive to Self-Epitopes. Int J Mol Sci 2023; 24:13335. [PMID: 37686141 PMCID: PMC10488187 DOI: 10.3390/ijms241713335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Giorgia Paldino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Josephine Alba
- Department of Biology, University of Fribourg, Chemin du Musée, 1700 Fribourg, Switzerland;
| | - Emanuele Molteni
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rossana Scrivo
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Mattia Congia
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Alberto Cauli
- Rheumatology Unit, AOU and University of Cagliari, 09042 Monserrato, Italy; (M.C.); (A.C.)
| | - Rosalba Caccavale
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Marino Paroli
- Department of Biotechnology and Medical Surgical Sciences, Division of Clinical Immunology and Rheumatology, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy; (R.C.); (M.P.)
| | - Manuela Di Franco
- Rheumatology Unit, Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (R.S.); (M.D.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Rosa Sorrentino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
10
|
Evnouchidou I, Koumantou D, Nugue M, Saveanu L. M1-aminopeptidase family - beyond antigen-trimming activities. Curr Opin Immunol 2023; 83:102337. [PMID: 37216842 DOI: 10.1016/j.coi.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Antigen (Ag)-trimming aminopeptidases belong to the oxytocinase subfamily of M1 metallopeptidases. In humans, this subfamily contains the endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and 2) and the insulin-responsive aminopeptidase (IRAP, synonym oxytocinase), an endosomal enzyme. The ability of these enzymes to trim antigenic precursors and to generate major histocompatibility class-I ligands has been demonstrated extensively for ERAP1, less for ERAP2, which is absent in rodents, and exclusively in the context of cross-presentation for IRAP. During 20 years of research on these aminopeptidases, their enzymatic function has been very well characterized and their genetic association with autoimmune diseases, cancers, and infections is well established. The mechanisms by which these proteins are associated to human diseases are not always clear. This review discusses the Ag-trimming-independent functions of the oxytocinase subfamily of M1 aminopeptidases and the new questions raised by recent publications on IRAP and ERAP2.
Collapse
Affiliation(s)
- Irini Evnouchidou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France; Inovarion, Paris, France
| | - Despoina Koumantou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Mathilde Nugue
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Loredana Saveanu
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France.
| |
Collapse
|
11
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Paldino G, Fierabracci A. Shedding new light on the role of ERAP1 in Type 1 diabetes: A perspective on disease management. Autoimmun Rev 2023; 22:103291. [PMID: 36740089 DOI: 10.1016/j.autrev.2023.103291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes mellitus (T1D) is a multifactorial organ specific autoimmune disease which originates from the destruction of insulin-producing beta cells within the pancreatic islets by autoreactive CD8+ T lymphocytes. The autoimmune responses are raised against autoantigenic peptides presented in the context of the Major Histocompatibility Complex (MHC) class I molecules. Peptides are generated in the cytoplasm of the beta cell by degradation through the proteasome activity and other proteases. Proteolytic intermediate protein fragments are then vehicled into the endoplasmic reticulum (ER) by transporters associated with antigen processing TAP1 and TAP2. In the ER, Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) and 2 (ERAP2) shape the intermediate proteins to produce the optimal peptide size for loading into the MHC class I molecules. Subsequently complexes are shuttled to the cell surface for antigen presentation. Genome Wide Association Studies (GWAS) have identified different SNPs of ERAP1 associated to several autoimmune diseases and in particular the T1D-related ERAP1 SNP rs30187 encoding for K528R ERAP1. An association between the ER stress and the increased exposure of beta cells to the immune system has been hypothesized to further contribute to the etiopathogenesis. In particular in a recent study by Thomaidou et al. 2020 (doi: https://doi.org/10.2337/db19-0984) the posttranscriptional regulation of ERAP1 is shown to shaping the recognition of the preproinsulin (PPI) signal peptide by cytotoxic T lymphocytes. In the light of foregoing ERAP1 inhibitors could potentially prevent the activation of epitope-specific autoimmune-promoting T cells and their cytokine production; further regulating ERAP1 expression at posttranscriptional level under stress conditions of the beta cells could help to reverse autoimmune process through limiting epitope-presentation to autoreactive T cells. In this article we provide a perspective on the role of ERAP1 as implicated in the pathogenesis of insulin-dependent diabetes mellitus by reviewing studies reported in literature and discussing our own experimental evidence.
Collapse
|