1
|
Amancherla K, Taravella Oill AM, Bledsoe X, Williams AL, Chow N, Zhao S, Sheng Q, Bearl DW, Hoffman RD, Menachem JN, Siddiqi HK, Brinkley DM, Mee ED, Hadad N, Agrawal V, Schmeckpepper J, Rali AS, Tsai S, Farber-Eger EH, Wells QS, Freedman JE, Tucker NR, Schlendorf KH, Gamazon ER, Shah RV, Banovich N. Dynamic responses to rejection in the transplanted human heart revealed through spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640852. [PMID: 40093136 PMCID: PMC11908199 DOI: 10.1101/2025.02.28.640852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Allograft rejection following solid-organ transplantation is a major cause of graft dysfunction and mortality. Current approaches to diagnosis rely on histology, which exhibits wide diagnostic variability and lacks access to molecular phenotypes that may stratify therapeutic response. Here, we leverage image-based spatial transcriptomics at sub-cellular resolution in longitudinal human cardiac biopsies to characterize transcriptional heterogeneity in 62 adult and pediatric heart transplant (HT) recipients during and following histologically-diagnosed rejection. Across 28 cell types, we identified significant differences in abundance in CD4 + and CD8 + T cells, fibroblasts, and endothelial cells across different biological classes of rejection (cellular, mixed, antibody-mediated). We observed a broad overlap in cellular transcriptional states across histologic rejection severity and biological class and significant heterogeneity within rejection severity grades that would qualify for immunomodulatory treatment. Individuals who had resolved rejection after therapy had a distinct transcriptomic profile relative to those with persistent rejection, including 216 genes across 6 cell types along pathways of inflammation, IL6-JAK-STAT3 signaling, IFNα/IFNγ response, and TNFα signaling. Spatial transcriptomics also identified genes linked to long-term prognostic outcomes post-HT. These results underscore importance of subtyping immunologic states during rejection to stratify immune-cardiac interactions following HT that are therapeutically relevant to short- and long-term rejection-related outcomes.
Collapse
|
2
|
Attrill MH, Shinko D, Viveiros TM, Milighetti M, de Gruijter NM, Jebson B, Kartawinata M, Rosser EC, Wedderburn LR, Pesenacker AM. Treg fitness signatures as a biomarker for disease activity in Juvenile Idiopathic Arthritis. J Autoimmun 2025; 152:103379. [PMID: 39954509 DOI: 10.1016/j.jaut.2025.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Juvenile Idiopathic Arthritis (JIA) is an autoimmune condition characterised by flares of joint inflammation. However, no reliable biomarker exists to predict the erratic disease course. Normally, regulatory T cells (Tregs) maintain tolerance, with altered Tregs associated with autoimmunity. Treg signatures have shown promise in monitoring other conditions, therefore a Treg gene/protein signature could offer novel biomarker potential for predicting disease activity in JIA. Machine learning on our nanoString Treg 48-gene signature on peripheral blood (PB) Tregs generated a model to distinguish active JIA (active joint count, AJC≥1) Tregs from healthy controls (HC, AUC = 0.9875 on test data). Biomarker scores from this model successfully differentiated inactive (AJC = 0) from active JIA PB Tregs. Moreover, scores correlated with clinical activity scores (cJADAS), and discriminated subclinical disease (AJC = 0, cJADAS≥0.5) from remission (cJADAS<0.5). To investigate altered protein expression as a surrogate measure for Treg fitness in JIA, we utilised spectral flow cytometry and unbiased clustering analysis. Three Treg clusters were of interest in active JIA PB, including TIGIThighCD226highCD25low Teff-like Tregs, CD39-TNFR2-Helioshigh, and a 4-1BBlowTIGITlowID2intermediate Treg cluster predominated in inactive JIA PB (AJC = 0). The ratio of these Treg clusters correlated to cJADAS, and higher ratios could potentially predict inactive individuals that flared by 9-month follow-up. Thus, we demonstrate altered Treg signatures and subsets as an important factor, and useful biomarker, for disease progression versus remission in JIA, revealing genes and proteins contributing to Treg fitness. Ultimately, PB Treg fitness measures could serve as routine biomarkers to guide disease and treatment management to sustain remission in JIA.
Collapse
Affiliation(s)
- Meryl H Attrill
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK; Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK
| | - Diana Shinko
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK
| | - Telma Martins Viveiros
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK
| | - Martina Milighetti
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK; Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK; Division of Medicine, UCL, London, WC1E 6JF, UK
| | - Bethany Jebson
- Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK; Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK
| | - Melissa Kartawinata
- Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK; Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK; Division of Medicine, UCL, London, WC1E 6JF, UK
| | - Lucy R Wedderburn
- Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK; Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK; NIHR Biomedical Research Centre at GOSH, London, WC1N 1EH, UK
| | - Anne M Pesenacker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK.
| |
Collapse
|
3
|
Wang S, Wang Q, Zhao K, Zhang S, Chen Z. Exploration of the shared diagnostic genes and mechanisms between periodontitis and primary Sjögren's syndrome by integrated comprehensive bioinformatics analysis and machine learning. Int Immunopharmacol 2024; 141:112899. [PMID: 39142001 DOI: 10.1016/j.intimp.2024.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Accumulating evidence has showed a bidirectional link between periodontitis (PD) and primary Sjögren's syndrome (pSS), but the mechanisms of their occurrence remain unclear. Hence, this study aimed to investigate the shared diagnostic genes and potential mechanisms between PD and pSS using bioinformatics methods. METHODS Gene expression data for PD and pSS were acquired from the Gene Expression Omnibus (GEO) database. Differential expression genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were utilized to search common genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to explore biological functions. Three machine learning algorithms (least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF)) were used to further identify shared diagnostic genes, and these genes were assessed via receiver operating characteristic (ROC) curves in discovery and validation datasets. CIBERSORT was employed for immune cell infiltration analysis. Transcription factors (TFs)-genes and miRNAs-genes regulatory networks were conducted by NetworkAnalyst. Finally, relevant drug targets were predicted by DSigDB. RESULTS Based on DEGs, 173 overlapping genes were obtained and primarily enriched in immune- and inflammation-related pathways. WGCNA revealed 34 common disease-related genes, which were enriched in similar biological pathways. Intersecting the DEGs with WGCNA results yielded 22 candidate genes. Moreover, three machine learning algorithms identified three shared genes (CSF2RB, CXCR4, and LYN) between PD and pSS, and these genes demonstrated good diagnostic performance (AUC>0.85) in both discovery and validation datasets. The immune cell infiltration analysis showed significant dysregulation in several immune cell populations. Regulatory network analysis highlighted that WRNIP1 and has-mir-155-5p might be pivotal co-regulators of the three shared gene expressions. Finally, the top 10 potential gene-targeted drugs were screened. CONCLUSION CSF2RB, CXCR4, and LYN may serve as potential biomarkers for the concurrent diagnosis of PD and pSS. Additionally, we identified common molecular mechanisms, TFs, miRNAs, and candidate drugs between PD and pSS, which may provide novel insights and targets for future research on the pathogenesis, diagnosis, and therapy of both diseases.
Collapse
Affiliation(s)
- Shaoru Wang
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China; Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Qimin Wang
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Kai Zhao
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215125, China
| | - Shengchao Zhang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhenggang Chen
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China; The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
4
|
Zhang N, Zhang H, Bao X, Yuan C. Transactivation DNA-binding protein-related genes were associated with salivary gland injury in primary Sjögren syndrome. Medicine (Baltimore) 2024; 103:e39827. [PMID: 39331939 PMCID: PMC11441856 DOI: 10.1097/md.0000000000039827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
The purpose was to identify transactivation DNA-binding protein-related genes in salivary gland injury in primary Sjögren syndrome (pSS) in southwest China. We downloaded the datasets of GSE7451, GSE23117, and GSE40611. In order to screen the candidate genes, 2 kinds of machine learning algorithms were used. We collected blood from 28 patients and 20 controls to verify the expression of candidate genes using quantitative real-time polymerase chain reaction. The receiver operating characteristic curve was used to evaluate the diagnostic efficiency. Correlations between candidate genes and immune cells were examined. A total of 31 differentially expressed genes were obtained. Through different algorithms, 6 genes including IFIT1, CSF2RB, TRIM22, PPM1H, VAMP7, and C21orf2 were getted. Validation results suggested that the expression of CSF2RB, VAMP7, IFIT1, C21orf2, and TRIM22 was significantly increased in pSS. The area under the curve of CSF2RB was 0.937 and that of TRIM22 was 0.915. Immune infiltration analysis showed that the percentage of activated mast cells was lower than the controls (P = .025). Correlation analysis suggested that CSF2RB was associated with immune cell infiltration. The expression of CSF2RB was significantly upregulated, which could be related to the increase of γδ T cells. We revealed that CSF2RB could be the candidate gene of pSS. CSF2RB was involved by regulating various immune cells. The expression of CSF2RB was significantly upregulated, which was related to the increase of γδ T cells.
Collapse
Affiliation(s)
- Naidan Zhang
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
| | - Hongsheng Zhang
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
| | - Xiao Bao
- Department of Rheumatology, Peoples Hospital of Deyang City, Deyang, China
| | - Chengliang Yuan
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
| |
Collapse
|
5
|
Mejia-Garcia A, Fernandez GJ, Echeverri LF, Balcazar N, Acin S. RNA-seq analysis reveals modulation of inflammatory pathways by an enriched-triterpene natural extract in mouse and human macrophage cell lines. Heliyon 2024; 10:e24382. [PMID: 38293365 PMCID: PMC10826738 DOI: 10.1016/j.heliyon.2024.e24382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Chronic inflammation is crucial in developing insulin resistance and type 2 diabetes. Previous studies have shown that a leaf extract of Eucalyptus tereticornis, with ursolic acid (UA), oleanolic acid (OA), and ursolic acid lactone (UAL) as the main molecules (78 %) mixed with unknown minor metabolites (22 %), provided superior anti-inflammatory, hypoglycemic, and hypolipidemic effects than reconstituted triterpenoid mixtures in macrophage cell lines and a pre-diabetic mouse model. Further identification of the molecular mechanisms of action of this mixture of triterpenes is required. This study aims to analyse the RNA expression profiles of mouse and human macrophage cell lines treated with the natural extract and its components. Activated macrophage cell lines were treated with the natural extract, UA, OA, UAL or a triterpene mixture (M1). RNA was extracted and sequenced using the DNBseq platform and the EnrichR software to perform gene enrichment analysis using the Gene Ontology database, Kyoto Encyclopedia of Genes and Genomes, and Reactome. To conduct clustering analysis, we standardised the normalised counts of each gene and applied k-means clustering. The combination of molecules in the natural extract has an additive or synergic effect that affects the expression of up-regulated genes by macrophage activation. Triterpenes (M1) regulated 76 % of human and 68 % of mouse genes, while uncharacterised minority molecules could regulate 24 % of human and 32 % of mouse genes. The extract inhibited the expression of many cytokines (IL6, IL1, OSM), chemokines (CXCL3), inflammatory mediators (MMP8 and MMP13) and the JAK-STAT signalling pathway in both models. The natural extract has a more powerful immunomodulatory effect than the triterpene mixture, increasing the number of genes regulated in mouse and human models. Our study shows that Eucalyptus tereticornis extract is a promising option for breaking the link between inflammation and insulin resistance.
Collapse
Affiliation(s)
- Alejandro Mejia-Garcia
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Geysson Javier Fernandez
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Luis Fernando Echeverri
- Grupo QOPN, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Norman Balcazar
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Medicina, Departamento de fisiología y Bioquímica, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Sergio Acin
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Medicina, Departamento de fisiología y Bioquímica, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
6
|
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol 2023; 14:1230264. [PMID: 37771588 PMCID: PMC10522836 DOI: 10.3389/fimmu.2023.1230264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multisystem inflammatory disease with wide variability in clinical manifestations. Natural arising CD4+ regulatory T cells (Tregs) play a critical role in maintaining peripheral tolerance by suppressing inflammation and preventing autoimmune responses in SLE. Additionally, CD8+ regulatory T cells, type 1 regulatory T cells (Tr1), and B regulatory cells also have a less well-defined role in the pathogenesis of SLE. Elucidation of the roles of various Treg subsets dedicated to immune homeostasis will provide a novel therapeutic approach that governs immune tolerance for the remission of active lupus. Diminished interleukin (IL)-2 production is associated with a depleted Treg cell population, and its reversibility by IL-2 therapy provides important reasons for the treatment of lupus. This review focuses on the pathogenesis and new therapeutics of human Treg subsets and low-dose IL-2 therapy in clinical benefits with SLE.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children’s Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Hsiao
- Department of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children’s Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Kuender D. Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|