1
|
Cha H, Lee CM, Kim S, Kang CK, Choe PG, Jeon YK, Jo HJ, Kim NJ, Park WB, Kim HJ. Innate immune signatures in the nasopharynx after SARS-CoV-2 infection and links with the clinical outcome of COVID-19 in Omicron-dominant period. Cell Mol Life Sci 2024; 81:364. [PMID: 39172244 PMCID: PMC11342914 DOI: 10.1007/s00018-024-05401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is characterized by impaired induction of interferons (IFNs) and IFN-stimulated genes (ISGs), the IFNs and ISGs in upper airway is essential to restrict the spread of respiratory virus. Here, we identified the prominent IFN and ISG upregulation in the nasopharynx (NP) of mild and even severe coronavirus disease 2019 (COVID-19) patients (CoV2+) in Omicron era and to compare their clinical outcome depending on the level of IFNs and ISGs. Whereas the induction of IFNB was minimal, transcription of IFNA, IFNG, and IFNLs was significantly increased in the NP of CoV2 + patients. IFNs and ISGs may be more upregulated in the NP of CoV2 + patients at early phases of infection according to viral RNA levels and this is observed even in severe cases. IFN-related innate immune response might be characteristic in macrophages and monocytes at the NP and the CoV2 + patients with higher transcription of IFNs and ISGs in the NP showed a correlation with good prognosis of COVID-19. This study presents that IFNs and ISGs may be upregulated in the NP, even in severe CoV2 + patients depending on viral replication during Omicron-dominant period and the unique IFN-responsiveness in the NP links with COVID-19 clinical outcomes.
Collapse
Affiliation(s)
- Hyunkyung Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Jae Jo
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
2
|
Jo A, Kim KS, Won J, Shin H, Kim S, Kim B, Kim DJ, Cho JY, Kim HJ. Nasal symbiont Staphylococcus epidermidis restricts influenza A virus replication via the creation of a polyamine-deficient cellular environment. Commun Biol 2024; 7:1031. [PMID: 39174732 PMCID: PMC11341892 DOI: 10.1038/s42003-024-06706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Studies on the immune-regulatory roles played by the commensal microbes residing in the nasal mucosa consider the contribution of antiviral immune responses. Here, we sought to identify the nasal microbiome, Staphylococcus epidermidis-regulated antiviral immune responses and the alteration of polyamine metabolites in nasal epithelium. We found that polyamines were required for the life cycle of influenza A virus (IAV) and depletion of polyamines disturbed IAV replication in normal human nasal epithelial (NHNE) cells. Inoculation of S. epidermidis also suppressed IAV infection and the concentration of polyamines including putrescine, spermidine, and spermine was completely attenuated in S. epidermidis-inoculated NHNE cells. S. epidermidis activated the enzyme involved in the production of ornithine from arginine and downregulated the activity of the enzyme involved in the production of putrescine from ornithine in nasal epithelium. S. epidermidis also induced the activation of enzymes that promote the extracellular export of spermine and spermidine in NHNE cells. Our findings demonstrate that S. epidermidis is shown to be able of creating an intracellular environment lacking polyamines in the nasal epithelium and promote the balance of cellular polyamines in favor of the host to restrict influenza virus replication.
Collapse
Affiliation(s)
- Ara Jo
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeong-Seog Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jina Won
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haeun Shin
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bora Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
- Seoul National University Hospital, Seoul, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Svensson Akusjärvi S, Zanoni I. Yin and yang of interferons: lessons from the coronavirus disease 2019 (COVID-19) pandemic. Curr Opin Immunol 2024; 87:102423. [PMID: 38776716 PMCID: PMC11162909 DOI: 10.1016/j.coi.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The host immune response against severe acute respiratory syndrome coronavirus 2 includes the induction of a group of natural antiviral cytokines called interferons (IFNs). Although originally recognized for their ability to potently counteract infections, the mechanistic functions of IFNs in patients with varying severities of coronavirus disease 2019 (COVID-19) have highlighted a more complex scenario. Cellular and molecular analyses have revealed that timing, location, and subtypes of IFNs produced during severe acute respiratory syndrome coronavirus 2 infection play a major role in determining disease progression and severity. In this review, we summarize what the COVID-19 pandemic has taught us about the protective and detrimental roles of IFNs during the inflammatory response elicited against a new respiratory virus across different ages and its longitudinal consequences in driving the development of long COVID-19.
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Zanoni
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Gil CH, Oh C, Lee J, Jang M, Han J, Cho SD, Park SH, Park JH, Kim HJ. Inhalation Delivery of Interferon-λ-Loaded Pulmonary Surfactant Nanoparticles Induces Rapid Antiviral Immune Responses in the Lung. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11147-11158. [PMID: 38407048 DOI: 10.1021/acsami.3c13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The interferon-λ (IFN-λ)-regulated innate immune responses in the airway expand our understanding toward antiviral strategies against influenza A virus (IAV). The application of IFN-λ as mucosal antiviral therapeutic is still challenging, and advanced research will be necessary to achieve more efficient delivery of recombinant IFN-λs to the damaged respiratory mucosa. In this study, we examine the capability of IFN-λ to stimulate the innate immune response, promoting the swift elimination of IAV in the lungs. Additionally, we develop IFN-λ-loaded nanoparticles incorporated into pulmonary surfactant for inhalation therapy aimed at treating lung infections caused by IAV. We found that inhaled delivery of IFNλ-PSNPs significantly restricted IAV replication in the lungs from 3 days after infection (dpi), and IAV-caused lung histopathologic findings were completely improved in response to IFNλ-PSNPs. More significant and rapid attenuation of viral RNA was observed in the lung of mice with inhaled delivery of IFNλ-PSNPs compared to mice with recombinant IFN-λs. Inhalation treatment of IFNλ-PSNPs to IAV-infected mice can result in the increase of monocyte frequency in concert with restoration of T and B cells composition. Furthermore, the transcriptional profiles of monocytes shifted toward heightened IFN responses following IFNλ-PSNP treatment. These results imply that IFN-λ could serve as a robust inducer of innate immunity in the lungs against IAV infection, and inhalation of IFN-λs encapsulated in PSNPs effectively resolves lung infections caused by IAV through rapid viral clearance. PSNPs facilitated improved delivery of IFN-λs to the lungs, triggering potent antiviral immune responses upon IAV infection onset.
Collapse
Affiliation(s)
- Chan Hee Gil
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chanhee Oh
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jeongsoo Lee
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Mincheol Jang
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Junhee Han
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Daejeon 34141, Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Hospital, Seoul 03080, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
5
|
Xiang Y, Mou C, Zhu L, Wang Z, Shi K, Bao W, Li J, Chen X, Chen Z. SADS-CoV nsp1 inhibits the STAT1 phosphorylation by promoting K11/K48-linked polyubiquitination of JAK1 and blocks the STAT1 acetylation by degrading CBP. J Biol Chem 2024; 300:105779. [PMID: 38395305 PMCID: PMC10944115 DOI: 10.1016/j.jbc.2024.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.
Collapse
Affiliation(s)
- Yingjie Xiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ziyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Chio CC, Chan HW, Chen SH, Huang HI. Enterovirus D68 vRNA induces type III IFN production via MDA5. Virus Res 2024; 339:199284. [PMID: 38040125 PMCID: PMC10704515 DOI: 10.1016/j.virusres.2023.199284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shih-Hsiang Chen
- Division of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
7
|
Cho SD, Shin H, Kim S, Kim HJ. Insights on interferon-independent induction of interferon-stimulated genes shaping the lung's response in early SARS-CoV-2 infection. Heliyon 2023; 9:e22997. [PMID: 38125412 PMCID: PMC10731229 DOI: 10.1016/j.heliyon.2023.e22997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
While mRNA vaccine efficacy against the 2019 coronavirus disease (COVID-19) outbreak remains high, research on antiviral innate immune responses in the early stages of infection is essential to develop strategies to prevent the dissemination of SARS-CoV-2. In this study, we investigated the induction of both interferon (IFN)-stimulated genes (ISGs) and IFN-independently upregulated ISGs following SARS-CoV-2 infection in Syrian golden hamsters. The viral titers were highest at 3 days post-infection (dpi). Over time, the viral titer gradually decreased while ISGs such as Mx1, Ifit2, Ifit3, Ifi44, and Rsad2 were markedly induced in the lung. The transcription of ISGs significantly increased from 2 dpi, and SARS-CoV-2-induced ISGs were maintained in the hamster lung until 7 dpi. The transcription of Ifnb and Ifng was minimally elevated, while Ifnl2/3 was significantly induced in the lung at 5 days after SARS-CoV-2 infection. RNA sequencing results also showed that at 3 dpi, SARS-CoV-2 initiated the activation of ISGs, with lesser increases of Ifnl2 and Ifnl3 transcription. In addition, Ddx58 and cGAS, which encode factors for virus sensing, Stat1, Stat2, and IFN regulatory factor 7 and 9 mRNA levels were also induced at the initial stage of infection. Our data demonstrate that ISGs might be upregulated in the lung in response to SARS-CoV-2 during the early stages of infection, and the rapid induction of ISGs was not associated with the activation of IFNs. Elucidation of IFN-independent induction of ISGs could further our understanding of alternative defense mechanisms employed by the lungs against SARS-CoV-2 and provide more effective antiviral strategies for patients with severe COVID-19.
Collapse
Affiliation(s)
- Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Haeun Shin
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|