1
|
Maher T, Song JW, Kramer MR, Lancaster L, Corte TJ, Yun J, Kim K, Cho J, Sather LF, George PM, Devaraj A, Jung JH, Jung S. Phase 2 study design and analysis approach for BBT-877: an autotaxin inhibitor targeting idiopathic pulmonary fibrosis. BMJ Open Respir Res 2025; 12:e003038. [PMID: 40404183 PMCID: PMC12097056 DOI: 10.1136/bmjresp-2024-003038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
INTRODUCTION Proof-of-concept (POC) studies are vital in determining the feasibility of further drug development, primarily by assessing preliminary efficacy signals with credible endpoints. However, traditional POC studies in idiopathic pulmonary fibrosis (IPF) can suffer from low credibility due to small sample sizes and short durations, leading to non-replicable results in larger phase III trials. To address this, we are conducting a 24-week POC study with 120 patients with IPF, using a statistically supported sample size and incorporating exploratory CT-based imaging biomarkers, to support decision-making in the case of non-significant primary endpoint results. This approach aims to provide data to enable a robust decision-making process for advancing clinical development of BBT-877. METHODS AND ANALYSIS In this phase II, double-blind, placebo-controlled study, approximately 120 patients with IPF will be randomised in a 1:1 ratio to receive placebo or 200 mg of BBT-877 two times per day over 24 weeks, with stratification according to background use of an antifibrotic treatment (pirfenidone background therapy, nintedanib background therapy or no background therapy). The primary endpoint is absolute change in forced vital capacity (FVC) (mL) from baseline to week 24. Key secondary endpoints include change from baseline to week 24 in %-predicted FVC, diffusing capacity of the lung for carbon monoxide, 6 min walk test, patient-reported outcomes, pharmacokinetics and safety, and tolerability. Key exploratory endpoints include eLung-based CT evaluation and biomarker-based assessment of pharmacodynamics. ETHICS AND DISSEMINATION This study is being conducted following the Declaration of Helsinki principles, Good Clinical Practice guidance, applicable local regulations and local ethics committees. An independent data monitoring committee unblinded to individual subject treatment allocation will evaluate safety and efficacy data on a regular basis throughout the study. The results of this study will be presented at scientific conferences and peer-review publications. TRIAL REGISTRATION NUMBER NCT05483907.
Collapse
Affiliation(s)
- Toby Maher
- Department of Pulmonary, Critical Care and Sleep Medicine, USC Keck School of Medicine, Los Angeles, California, USA
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Lisa Lancaster
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Jeong Yun
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - KyungJin Kim
- Bridge Biotherapeutics Inc, Gyeonggi-do, Republic of Korea
| | - Jimin Cho
- Bridge Biotherapeutics Inc, Gyeonggi-do, Republic of Korea
| | | | - Peter M George
- Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Brainomix, Oxford, UK
| | | | - Jin Hyuk Jung
- Bridge Biotherapeutics Inc, Gyeonggi-do, Republic of Korea
| | - Sujin Jung
- Bridge Biotherapeutics Inc, Gyeonggi-do, Republic of Korea
- Bridge Biotherapeutics Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Sun X, Zhang X, He Y, Du X, Cai Q, Liu Z. CD4 +T and CD8 +T cells profile in lung inflammation and fibrosis: targets and potential therapeutic drugs. Front Immunol 2025; 16:1562892. [PMID: 40433386 PMCID: PMC12107634 DOI: 10.3389/fimmu.2025.1562892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/01/2025] [Indexed: 05/29/2025] Open
Abstract
Pulmonary fibrosis is an interstitial lung disease characterized by chronic progressive fibrosis. It is associated with fibrocyte proliferation and collagen deposition, leading to severe, irreversible lung function decline. Despite extensive research, the diagnosis and treatment of pulmonary fibrosis are complicated and have no effective treatment. During the formation of pulmonary fibrosis, immune dysregulation by inflammatory cell infiltration is the key driver of pulmonary fibrosis. Recently, single-cell sequencing analysis of silicosis mice showed that various cells in the alveolar immune microenvironment are involved in forming pulmonary fibrosis, such as macrophages, fibroblasts, epithelial cells, etc. Among them, T cell subpopulations in silicosis mice were significantly activated, indicating that T lymphocyte subsets play an essential role in the process of pulmonary fibrosis. More and more pulmonary clinical studies show that T lymphocytes in the lung immune microenvironment play an important and multifaceted role. This article summarizes the role of CD4+T cells and CD8+T cells in pulmonary fibrosis. This article provides some new insight into the potential therapy target that can delay the process of pulmonary fibrosis by regulating the proportions of different subpopulations of T lymphocytes and some related signaling pathways.
Collapse
Affiliation(s)
- Xiaobo Sun
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Xinwen Zhang
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yuhan He
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Xueting Du
- Pathogenic Microbiology Laboratory, Yinchuan Center for Disease Control and Prevention, Yinchuan, China
| | - Qian Cai
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Zhihong Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Sristi, Gupta G, Abourehab MAS, Sahebkar A, Kesharwani P. Recent advances in PD-L1 siRNA nanocarriers for cancer therapy. Int J Biol Macromol 2025; 311:143994. [PMID: 40339860 DOI: 10.1016/j.ijbiomac.2025.143994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Tumor immune evasion depends on the programmed death-ligand 1 (PD-L1) mechanism, making it a prominent target in cancer therapy. Small interfering RNA (siRNA) designed to inhibit PD-L1 expression presents an innovative approach for boosting immunity against tumors. However, the therapeutic use of siRNA faces challenges, primarily due to its instability and inefficient cellular delivery. Recent advancements in nanocarrier technologies have shown promise in overcoming these obstacles, improving the delivery and efficacy of PD-L1 siRNA. This review comprehensively explores various nanocarrier systems, including lipid nanoparticles, polymeric carriers, and inorganic nanoparticles, highlighting their design innovations and applications in targeting PD-L1 in diverse cancer models. We discuss the synergistic effects of PD-L1 siRNA delivered via nanocarriers in conjunction with chemotherapy and immunomodulators, showcasing their potential to boost immune responses and reduce tumor growth. Additionally, we address ongoing challenges such as optimizing biodistribution and minimizing off-target effects, which hinder clinical translation. By synthesizing recent research findings, this review aims to illuminate the transformative potential of PD-L1 siRNA nanocarriers in cancer immunotherapy, paving the way for future studies aimed at enhancing therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Sristi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida 201301, UP, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
4
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
5
|
Zhao Y, Qi Y, Duan M, Hao C, Yao W. Time-series transcriptome analysis mapping pulmonary immune checkpoint atlas of experimental silicosis. Genes Dis 2025; 12:101258. [PMID: 39498466 PMCID: PMC11532297 DOI: 10.1016/j.gendis.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 11/07/2024] Open
Affiliation(s)
- Youliang Zhao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanmeng Qi
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meixiu Duan
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changfu Hao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
6
|
Tomos I, Kanellopoulou P, Nastos D, Aidinis V. Pharmacological targeting of ECM homeostasis, fibroblast activation and invasion for the treatment of pulmonary fibrosis. Expert Opin Ther Targets 2025; 29:43-57. [PMID: 39985559 DOI: 10.1080/14728222.2025.2471579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with a dismal prognosis. While the standard-of-care (SOC) drugs approved for IPF represent a significant advancement in antifibrotic therapies, they primarily slow disease progression and have limited overall efficacy and many side effects. Consequently, IPF remains a condition with high unmet medical and pharmacological needs. AREAS COVERED A wide variety of molecules and mechanisms have been implicated in the pathogenesis of IPF, many of which have been targeted in clinical trials. In this review, we discuss the latest therapeutic targets that affect extracellular matrix (ECM) homeostasis and the activation of lung fibroblasts, with a specific focus on ECM invasion. EXPERT OPINION A promising new approach involves targeting ECM invasion by fibroblasts, a process that parallels cancer cell behavior. Several cancer drugs are now being tested in IPF for their ability to inhibit ECM invasion, offering significant potential for future treatments. The delivery of these therapies by inhalation is a promising development, as it may enhance local effectiveness and minimize systemic side effects, thereby improving patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Ioannis Tomos
- 5th Department of Respiratory Medicine, 'SOTIRIA' Chest Diseases Hospital of Athens, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dimitris Nastos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
7
|
Perrotta F, Lacedonia D, D’Agnano V, Bianco A, Scioscia G, Tondo P, Foschino Barbaro MP, Mariani F, Lettieri S, Del Frate L, Mancinelli S, Piloni D, Oggionni T, Bortolotto C, Carrozzi L, Cerveri I, Guido Corsico A, Stella GM. Interstitial lung diseases with concomitant lung cancer: a data mining approach revealing a complex condition with gender- and immune-associated specific implications. Front Oncol 2024; 14:1488157. [PMID: 39741973 PMCID: PMC11685083 DOI: 10.3389/fonc.2024.1488157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Background Interstitial lung diseases (ILDs) comprise a family of heterogeneous entities, primarily characterised by chronic scarring of the lung parenchyma. Among ILDs, idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonitis, associated with progressive functional decline leading to respiratory failure, a high symptom burden, and mortality. Notably, the incidence of lung cancer (LC) in patients already affected by ILDs-mainly IPF-is significantly higher than in the general population. Moreover, these cases are often neglected and deprived of active oncologic treatments. Methods We here aim to identify variables predictive of outcome (mortality) in a multicentre retrospective cohort of ILD associated with lung cancer, collected from 2018 to the end of 2023. Overall, 73 cases were identified, and exhaustive clinicopathologic data were available for 55 patients. Among them, 42 had IPF. The entire dataset was then analysed by using the JMP partition algorithm (JMP-Statistical Discoveries, from SAS), which can choose the optimum splits from many possible trees, making it a powerful modelling and data discovery tool. Results The average age at lung cancer diagnosis was 71.4 years, whereas the average age at IPF diagnosis was 69.5 years. The average Charlson Comorbidity Index was 4.6. Female patients constituted 28.3% (15) of the evaluated cases. The most frequent tumour histotype was adenocarcinoma (45.2%), and in more than 60% of the cases (67.9%), cancer was diagnosed at an early stage (TNM I-II-IIIA). A significant gender difference emerges regarding the overall patient survival, and quite unexpectedly, surgical approach to IPF-associated LC and the detection of serum autoantibodies are among the strongest outcome predictors. Conclusions The analysis performed is descriptive and successfully identifies key features of this specific and rare cancer population. IPF-associated LC emerges as a unique malignant disease defined by specific gender and histopathologic clinical and molecular parameters, which might benefit from active treatments.
Collapse
Affiliation(s)
- Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, Napoli, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Specialist Medicine, Institute of Respiratory Diseases, University-Hospital Polyclinic “Riuniti”, Foggia, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, Napoli, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, Napoli, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Specialist Medicine, Institute of Respiratory Diseases, University-Hospital Polyclinic “Riuniti”, Foggia, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Specialist Medicine, Institute of Respiratory Diseases, University-Hospital Polyclinic “Riuniti”, Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Specialist Medicine, Institute of Respiratory Diseases, University-Hospital Polyclinic “Riuniti”, Foggia, Italy
| | - Francesca Mariani
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Lucia Del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Silvia Mancinelli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Davide Piloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Tiberio Oggionni
- Department of Medical Sciences, Unit of Pneumology, Azienda Socio-sanitaria Territoriale (ASST) Crema, Crema, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia Medical School, Pavia, Italy
- Radiology Institute, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Laura Carrozzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Isa Cerveri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
8
|
Chen R, Lin Q, Tang H, Dai X, Jiang L, Cui N, Li X. PD-1 immunology in the kidneys: a growing relationship. Front Immunol 2024; 15:1458209. [PMID: 39507530 PMCID: PMC11537962 DOI: 10.3389/fimmu.2024.1458209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In recent years, knowledge regarding immune regulation has expanded rapidly, and major advancements have been made in immunotherapy for immune-associated disorders, particularly cancer. The programmed cell death 1 (PD-1) pathway is a cornerstone in immune regulation. It comprises PD-1 and its ligands mediating immune tolerance mechanisms and immune homeostasis. Accumulating evidence demonstrates that the PD-1 axis has a crucial immunosuppressive role in the tumor microenvironment and autoimmune diseases. PD-1 receptors and ligands on immune cells and renal parenchymal cells aid in maintaining immunological homeostasis in the kidneys. Here, we present a comprehensive review of PD-1 immunology in various kidney disorders, including renal cell carcinoma, glomerulonephritis, kidney transplantation, renal aging, and renal immune-related adverse events secondary to PD-1 immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningxun Cui
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Moua T, Baqir M, Ryu JH. What Is on the Horizon for Treatments in Idiopathic Pulmonary Fibrosis? J Clin Med 2024; 13:6304. [PMID: 39518443 PMCID: PMC11546700 DOI: 10.3390/jcm13216304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease most commonly encountered in older individuals. Several decades of research have contributed to a better understanding of its pathogenesis, though only two drugs thus far have shown treatment efficacy, i.e., by slowing the decline of lung function. The pathogenesis of IPF remains incompletely understood and involves multiple complex interactions and mechanisms working in tandem or separately to result in unchecked deposition of extracellular matrix components and collagen characteristic of the disease. These mechanisms include aberrant response to injury in the alveolar epithelium, inappropriate communication between epithelial cells and mesenchymal cells, imbalances between oxidative injury and tissue repair, recruitment of inflammatory pathways that induce fibrosis, and cell senescence leading to sustained activation and proliferation of fibroblasts and myofibroblasts. Targeted approaches to each of these mechanistic pathways have led to recent clinical studies evaluating the safety and efficacy of several agents. This review highlights selected concepts in the pathogenesis of IPF as a rationale for understanding current or future therapeutic approaches, followed by a review of several selected agents and their recent or active clinical studies. Current novel therapies include approaches to attenuating or modifying specific cellular or signaling processes in the fibrotic pathway, modifying inflammatory and metabolic derangements, and minimizing inappropriate cell senescence.
Collapse
Affiliation(s)
- Teng Moua
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; (M.B.); (J.H.R.)
| | | | | |
Collapse
|
10
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
11
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
12
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
Affiliation(s)
- Xuemei Wei
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Ning Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
13
|
Salminen A. The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J Mol Med (Berl) 2024; 102:733-750. [PMID: 38600305 PMCID: PMC11106179 DOI: 10.1007/s00109-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
14
|
Jiang A, Zheng X, Yan S, Yan J, Yao Y, He W. Advancing the Boundaries of Immunotherapy in Lung Adenocarcinoma with Idiopathic Pulmonary Fibrosis by a Biomimetic Proteinoid Enabling Selective Endocytosis. ACS NANO 2024. [PMID: 38319028 PMCID: PMC10883119 DOI: 10.1021/acsnano.3c09852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The coexistence of lung adenocarcinoma (LUAD) with idiopathic pulmonary fibrosis (IPF), which has been extensively documented as a prominent risk factor for checkpoint inhibitor-related pneumonitis (CIP) in patients undergoing immunotherapy, has long been considered a restricted domain for the use of immune checkpoint inhibitors (ICIs). To overcome it, an approach was employed herein to specifically target PD-L1 within the cellular interior, surpassing the conventional focus solely on the cytomembrane, thereby facilitating the development of ICIs capable of distinguishing between LUAD cells and noncancerous cells based on their distinctive endocytic propensities. By exploiting the aurophilicity-driven self-assembly of a PD-L1 binding peptide (PDBP) and subsequently encapsulating it within erythrocyte membranes (EM), the resulting biomimetic ICIs protein EMS-PDBP exhibited extraordinary selectivity in internalizing LUAD cells, effectively targeting PD-L1 within cancer cells while hindering its membrane translocation. The EMS-PDBP treatment not only reactivated the antitumor immune response in the LUAD orthotopic allograft mouse model but also demonstrated a favorable safety profile by effectively eliminating any immune-related adverse events (irAEs). Most significantly, EMS-PDBP successfully and safely restored the antitumor immune response in a mouse model of LUAD with coexistent IPF, thus shattering the confines of ICIs immunotherapy. The reported EMS-PDBP collectively offers a potential strategy for immune reactivation to overcome the limitations of immunotherapy in LUAD coexisting with IPF.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| |
Collapse
|
15
|
Mutsaers SE, Miles T, Prêle CM, Hoyne GF. Emerging role of immune cells as drivers of pulmonary fibrosis. Pharmacol Ther 2023; 252:108562. [PMID: 37952904 DOI: 10.1016/j.pharmthera.2023.108562] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia.
| | - Tylah Miles
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; School of Medical, Molecular and Forensic Sciences, Murdoch University, WA, Australia
| | - Gerard F Hoyne
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; The School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
16
|
Karampitsakos T, Galaris A, Chrysikos S, Papaioannou O, Vamvakaris I, Barbayianni I, Kanellopoulou P, Grammenoudi S, Anagnostopoulos N, Stratakos G, Katsaras M, Sampsonas F, Dimakou K, Manali ED, Papiris S, Tourki B, Juan-Guardela BM, Bakakos P, Bouros D, Herazo-Maya JD, Aidinis V, Tzouvelekis A. Expression of PD-1/PD-L1 axis in mediastinal lymph nodes and lung tissue of human and experimental lung fibrosis indicates a potential therapeutic target for idiopathic pulmonary fibrosis. Respir Res 2023; 24:279. [PMID: 37964265 PMCID: PMC10648728 DOI: 10.1186/s12931-023-02551-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mediastinal lymph node enlargement is prevalent in patients with idiopathic pulmonary fibrosis (IPF). Studies investigating whether this phenomenon reflects specific immunologic activation are lacking. METHODS Programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1) expression in mediastinal lymph nodes and lung tissues was analyzed. PD-1, PD-L1 mRNA expression was measured in tracheobronchial lymph nodes of mice following bleomycin-induced injury on day 14. Finally, the effect of the PD-1 inhibitor, pembrolizumab, in bleomycin-induced pulmonary fibrosis was investigated. RESULTS We analyzed mediastinal lymph nodes of thirty-three patients (n = 33, IPF: n = 14, lung cancer: n = 10, concomitant IPF and lung cancer: n = 9) and lung tissues of two hundred nineteen patients (n = 219, IPF: 123, controls: 96). PD-1 expression was increased, while PD-L1 expression was decreased, in mediastinal lymph nodes of patients with IPF compared to lung cancer and in IPF lungs compared to control lungs. Tracheobronchial lymph nodes isolated on day 14 from bleomycin-treated mice exhibited increased size and higher PD-1, PD-L1 mRNA levels compared to saline-treated animals. Pembrolizumab blunted bleomycin-induced lung fibrosis, as indicated by reduction in Ashcroft score and improvement in respiratory mechanics. CONCLUSIONS Mediastinal lymph nodes of patients with IPF exhibit differential expression profiles than those of patients with lung cancer indicating distinct immune-mediated pathways regulating fibrogenesis and carcinogenesis. PD-1 expression in mediastinal lymph nodes is in line with lung tissue expression. Lower doses of pembrolizumab might exert antifibrotic effects. Clinical trials aiming to endotype patients based on mediastinal lymph node profiling and accordingly implement targeted therapies such as PD-1 inhibitors are greatly anticipated.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Apostolos Galaris
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Serafeim Chrysikos
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ourania Papaioannou
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Vamvakaris
- Department of Pathology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ilianna Barbayianni
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Sofia Grammenoudi
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Nektarios Anagnostopoulos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Stratakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthaios Katsaras
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Katerina Dimakou
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Bochra Tourki
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Petros Bakakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Jose D Herazo-Maya
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Vassilis Aidinis
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece.
| |
Collapse
|
17
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Zhao Y, Qu Y, Hao C, Yao W. PD-1/PD-L1 axis in organ fibrosis. Front Immunol 2023; 14:1145682. [PMID: 37275876 PMCID: PMC10235450 DOI: 10.3389/fimmu.2023.1145682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Fibrosis is a pathological tissue repair activity in which many myofibroblasts are activated and extracellular matrix are excessively accumulated, leading to the formation of permanent scars and finally organ failure. A variety of organs, including the lung, liver, kidney, heart, and skin, can undergo fibrosis under the stimulation of various exogenous or endogenous pathogenic factors. At present, the pathogenesis of fibrosis is still not fully elucidated, but it is known that the immune system plays a key role in the initiation and progression of fibrosis. Immune checkpoint molecules are key regulators to maintain immune tolerance and homeostasis, among which the programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) axis has attracted much attention. The exciting achievements of tumor immunotherapy targeting PD-1/PD-L1 provide new insights into its use as a therapeutic target for other diseases. In recent years, the role of PD-1/PD-L1 axis in fibrosis has been preliminarily explored, further confirming the close relationship among PD-1/PD-L1 signaling, immune regulation, and fibrosis. This review discusses the structure, expression, function, and regulatory mechanism of PD-1 and PD-L1, and summarizes the research progress of PD-1/PD-L1 signaling in fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | - Wu Yao
- *Correspondence: Wu Yao, ; Changfu Hao,
| |
Collapse
|