1
|
Fuse H, Zheng Y, Alzoubi I, Graeber MB. TAMing Gliomas: Unraveling the Roles of Iba1 and CD163 in Glioblastoma. Cancers (Basel) 2025; 17:1457. [PMID: 40361384 PMCID: PMC12070867 DOI: 10.3390/cancers17091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Gliomas, the most common type of primary brain tumor, are a significant cause of morbidity and mortality worldwide. Glioblastoma, a highly malignant subtype, is particularly common, aggressive, and resistant to treatment. The tumor microenvironment (TME) of gliomas, especially glioblastomas, is characterized by a distinct presence of tumor-associated macrophages (TAMs), which densely infiltrate glioblastomas, a hallmark of these tumors. This macrophage population comprises both tissue-resident microglia as well as macrophages derived from the walls of blood vessels and the blood stream. Ionized calcium-binding adapter molecule 1 (Iba1) and CD163 are established cellular markers that enable the identification and functional characterization of these cells within the TME. This review provides an in-depth examination of the roles of Iba1 and CD163 in malignant gliomas, with a focus on TAM activation, migration, and immunomodulatory functions. Additionally, we will discuss how recent advances in AI-enhanced cell identification and visualization techniques have begun to transform the analysis of TAMs, promising unprecedented precision in their characterization and providing new insights into their roles within the TME. Iba1 and CD163 appear to have both unique and shared roles in glioma pathobiology, and both have the potential to be targeted through different molecular and cellular mechanisms. We discuss the therapeutic potential of Iba1 and CD163 based on available preclinical (experimental) and clinical (human tissue-based) evidence.
Collapse
Affiliation(s)
- Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Sydney, NSW 2010, Australia;
| | - Yuqi Zheng
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Wang W, Li J, He Q, Liu C, Wang S, Zheng Z, Zhang B, Mou S, Sun W, Zhao J. Integrated Analysis to Reveal Heterogeneity of Tumor-Associated Neutrophils in Glioma. Cancer Med 2025; 14:e70745. [PMID: 40052358 PMCID: PMC11886415 DOI: 10.1002/cam4.70745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Glioma, characterized by its cellular and molecular heterogeneity, presents formidable challenges in treatment strategy and prognostic assessment. The tumor microenvironment (TME) profoundly influences tumor behavior and treatment response, with tumor-associated neutrophils (TANs) playing a complex but understudied role. This study aimed to investigate the heterogeneity and role of TANs in glioma and to develop a prognostic model. METHODS Analysis of scRNA-seq data identified cellular subpopulations and differentially expressed neutrophil-related genes (DE-NRGs). Bulk RNA-seq was obtained from four independent datasets. Molecular subtypes of glioma samples were determined by consensus clustering. WGCNA was conducted to elucidate the association between gene modules and subtypes. We developed a risk score model. Expression of selected genes was confirmed using immunohistochemistry (IHC). In vitro experiments were also performed for functional verification, including CCK8, EdU, Transwell, and TUNEL assays. RESULTS A total of 108 DE-NRGs for TANs were identified based on scRNA-seq data. Two molecular subtypes were characterized, showing significant differences in prognosis and clinical features. Immune-related analyses demonstrated varied immunological characteristics between subtypes. The risk score model was constructed with 7 genes, including AEBP1, CAVIN1, DCTD, DEPP1, DUSP6, FKBP9, and UGCG. It showed significant prognostic value and was validated across three external datasets. The mutation landscape highlighted higher IDH mutation prevalence in low-risk groups. Drug sensitivity analysis indicated TMZ resistance in high-risk groups. In vitro experiments showed that UGCG could promote glioma cell proliferation, migration, and invasion, while decreasing apoptosis. CONCLUSION This study explored the heterogeneity of TANs and developed a prognostic model, providing insights for prognostic prediction and guiding personalized treatment strategies in glioma. Declaration of Generative AI in Scientific Writing: The authors declare nonuse of generative AI and AI-assisted technologies in the writing process.
Collapse
Affiliation(s)
- Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Junsheng Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qiheng He
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chenglong Liu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Siyu Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Bojian Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Siqi Mou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wei Sun
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
3
|
Kateh Shamshiri M, Vakili-Ghartavol R, Aiyelabegan HT, Asvar Z, Zare Marzouni H, Matbou Riahi M, Jaafari MR. M2 macrophage-targeting peptide-modified liposomes enhance the uptake and antitumor efficacy of liposomal IFN-γ in mice with C26 colon carcinoma. Cytokine 2025; 187:156860. [PMID: 39799744 DOI: 10.1016/j.cyto.2025.156860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
While liposomes enhance the safety and pharmacokinetic profile of free drugs, they have not significantly improved therapeutic efficacy. To overcome this challenge, targeted depletion of tumor-associated macrophages (TAMs) shows significant potential as an effective antitumor therapy, reducing off-target effects in comparison to non-targeted liposomes. In the context of peptide-mediated targeted cancer therapy, we evaluated the reprogramming activity of IFN-γ liposomes on TAMs, as well as that of IFN-γ liposomes modified with an M2 macrophage-targeting peptide, which binds preferentially to murine anti-inflammatory M2 macrophages/M2-like TAMs. Flow cytometry analysis showed significantly enhanced cellular uptake of m2-peptide-targeted liposomes in J774.1 macrophage cell lines compared to non-targeted liposomes. In BALB/c mice bearing C-26 murine carcinoma, the m2-peptide-targeted liposome groups exhibited significantly higher IFN-γ concentrations compared to non-targeted counterparts within the tumor environment. Furthermore, m2-peptide-targeted F2 liposomes at doses of 25 μg IFN-γ/kg resulted in superior tumor growth inhibition and greater tumor accumulation, indicating the potential of macrophage-targeted therapy in cancer growth inhibition. However, they failed to improve the overall therapeutic efficacy compared to Doxil. This study proposes a combination therapy of m2-peptide-targeted IFN-γ liposomes with successful chemotherapeutic liposomes such as Doxil.
Collapse
Affiliation(s)
- Maryam Kateh Shamshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Zare Marzouni
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Matbou Riahi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sabit H, Arneth B, Pawlik TM, Abdel-Ghany S, Ghazy A, Abdelazeem RM, Alqosaibi A, Al-Dhuayan IS, Almulhim J, Alrabiah NA, Hashash A. Leveraging Single-Cell Multi-Omics to Decode Tumor Microenvironment Diversity and Therapeutic Resistance. Pharmaceuticals (Basel) 2025; 18:75. [PMID: 39861138 PMCID: PMC11768313 DOI: 10.3390/ph18010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior. In-depth studies have uncovered immune evasion mechanisms, including the exhaustion of T cells and metabolic reprogramming in response to hypoxia from cancer cells. Single-cell multi-omics also revealed resistance mechanisms, such as stromal cell-secreted factors and physical barriers in the extracellular matrix. Future studies examining specific metabolic pathways and targeting approaches to reduce the heterogeneity in the TME will likely lead to better outcomes with immunotherapies, drug delivery, etc., for cancer treatments. Future studies will incorporate multi-omics data, spatial relationships in tumor micro-environments, and their translation into personalized cancer therapies. This review emphasizes how single-cell multi-omics can provide insights into the cellular and molecular heterogeneity of the TME, revealing immune evasion mechanisms, metabolic reprogramming, and stromal cell influences. These insights aim to guide the development of personalized and targeted cancer therapies, highlighting the role of TME diversity in shaping tumor behavior and treatment outcomes.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Aysha Ghazy
- Department of Agricultural Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtesam S. Al-Dhuayan
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Noof A. Alrabiah
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Ahmed Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Wei M, Zhou G, Chen L, Zhang Y, Ma W, Gao L, Gao G. The prognostic and immune significance of PLBD1 in pan-cancer and its roles in proliferation and invasion of glioma. J Cancer 2024; 15:3857-3872. [PMID: 38911364 PMCID: PMC11190780 DOI: 10.7150/jca.96365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Cancer is a destructive disease and is currently the leading cause of major threats to human health. PLBD1 is a transcription factor that regulates phospholipid metabolism, but its role in tumors is unknown. We assessed pan-cancer expression, methylation, and mutation data of PLBD1 by multiple databases to investigate its clinical prognostic value. In addition, we examined the pan-cancer immunological signature of PLBD1, particularly in gliomas. Furthermore, we assessed the impact of PLBD1 knockdown on the proliferation and invasive capacity of glioma cells by in vitro experiments. Our results suggest that PLBD1 is highly expressed in multiple types of cancers, and it can serve as an independent prognostic factor for gliomas. In addition, we found that the epigenetic alterations of PLBD1 were highly heterogeneous in a variety of cancers, including gliomas, and that its high methylation was associated with poor prognosis in a broad range of cancers. Immunological profiling demonstrated that PLBD1 was significantly associated with immune cell infiltration and multiple immune checkpoints in gliomas and is a potential biomarker for gliomas. Furthermore, cellular experiments showed that knockdown of PLBD1 significantly inhibited the proliferation and invasive ability of glioma cells. In conclusion, PLBD1 is a potential tumor prognostic biomarker and immunotherapeutic target that plays a crucial role in glioma cell proliferation, invasion and immunotherapy.
Collapse
Affiliation(s)
- Minghao Wei
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
- Department of Neurosurgery Ward II, the Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Gaoyang Zhou
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Lian Chen
- Department of Neurosurgery, the Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001 China
| | - Yufu Zhang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Wei Ma
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| |
Collapse
|
6
|
Yu F, Zhao LX, Chu S. TCHH as a Novel Prognostic Biomarker for Patients with Gastric Cancer by Bioinformatics Analysis. Clin Exp Gastroenterol 2024; 17:61-74. [PMID: 38434179 PMCID: PMC10906726 DOI: 10.2147/ceg.s451676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Background This study aims to investigate the clinicopathological significance and prognostic value of Trichohyalin (TCHH) in gastric cancer patients through bioinformatics analysis. Materials and Methods Data on TCHH expression and clinicopathological information were sourced from The Cancer Genome Atlas (TCGA). The Wilcoxon signed-rank test was used for evaluating the correlation between TCHH mRNA expression levels and clinicopathological features. The predictive significance of TCHH mRNA expression for overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in patients with gastric cancer was assessed using Cox regression models. Furthermore, measures of immune cell infiltration in gastric cancer were made, and studies of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were also carried out to investigate the possible roles of TCHH in patients with gastric cancer. Results Compared to normal tissues, gastric cancer had a considerably higher expression of TCHH mRNA (P < 0.05). Wilcoxon analysis revealed a significant association between TCHH mRNA expression and the pathologic M stage (P = 0.017). High TPMT mRNA levels were also correlated with worse OS, DFS, and PFI in gastric cancer patients (both P < 0.05). TCHH showed significant negative correlations with the levels of NK CD56dim infiltration (r = -0.157, p = 0.002), Th17 cells infiltration (r = -0.235, P < 0.001), and Th2 infiltration (r = -0.195, P < 0.001). Furthermore, enrichment analysis indicated potential involvement in intermediate filament cytoskeleton organization, DNA methylation in gamete generation, cell-cell recognition, and G protein-coupled peptide receptor (GPCRs) activity. Conclusion The level of TCHH mRNA may serve as a novel prognostic biomarker for gastric cancer patients.
Collapse
Affiliation(s)
- Fu Yu
- Department of Medical Oncology, Mingguang People’s Hospital of Anhui Province in China, Chuzhou, 239400, People’s Republic of China
| | - Li Xia Zhao
- Department of Radiation Oncology, Jieshou People’s Hospital of Anhui Province in China, Fuyang, 236500, People’s Republic of China
| | - Shangqi Chu
- Department of Medical Oncology, Nantong Haimen District People’s Hospital, Nantong, Jiangsu Province, 226100, People’s Republic of China
| |
Collapse
|
7
|
Zhang L, Qu X, Xu Y. Molecular and immunological features of TREM1 and its emergence as a prognostic indicator in glioma. Front Immunol 2024; 15:1324010. [PMID: 38370418 PMCID: PMC10869492 DOI: 10.3389/fimmu.2024.1324010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1), which belongs to the Ig-like superfamily expressed on myeloid cells, is reportedly involved in various diseases but has rarely been studied in glioma. In this study, the prognostic value and functional roles of TREM2 in glioma were analyzed. TERM1 was observed to be significantly upregulated in GBM compared to in other grade gliomas and was associated with poor prognosis. Increased TREM1 accompanied distinct mutation and amplification of driver oncogenes. Moreover, gene ontology and KEGG analyses showed that TREM1 might play a role in immunologic biological processes in glioma. TREM1 was also found to be tightly correlated with immune checkpoint molecules. xCell research revealed a link between TREM1 expression and multiple immune cell types, especially monocytes and macrophages. Single-cell analysis and immunofluorescence results showed that macrophages expressed TREM1. In vitro, inhibition of TREM1 signaling could result in a decrease in tumor-promoting effects of monocytes/TAMs. In summary, TREM1 may be a potential independent prognostic factor and immune target, which might provide new avenues to improve the efficacy of immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
8
|
Gilhodes J, Meola A, Cabarrou B, Peyraga G, Dehais C, Figarella-Branger D, Ducray F, Maurage CA, Loussouarn D, Uro-Coste E, Cohen-Jonathan Moyal E. A Multigene Signature Associated with Progression-Free Survival after Treatment for IDH Mutant and 1p/19q Codeleted Oligodendrogliomas. Cancers (Basel) 2023; 15:3067. [PMID: 37370678 DOI: 10.3390/cancers15123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND IDH mutant and 1p/19q codeleted oligodendrogliomas are the gliomas associated with the best prognosis. However, despite their sensitivity to treatment, patient survival remains heterogeneous. We aimed to identify gene expressions associated with response to treatment from a national cohort of patients with oligodendrogliomas, all treated with radiotherapy +/- chemotherapy. METHODS We extracted total RNA from frozen tumor samples and investigated enriched pathways using KEGG and Reactome databases. We applied a stability selection approach based on subsampling combined with the lasso-pcvl algorithm to identify genes associated with progression-free survival and calculate a risk score. RESULTS We included 68 patients with oligodendrogliomas treated with radiotherapy +/- chemotherapy. After filtering, 1697 genes were obtained, including 134 associated with progression-free survival: 35 with a better prognosis and 99 with a poorer one. Eight genes (ST3GAL6, QPCT, NQO1, EPHX1, CST3, S100A8, CHI3L1, and OSBPL3) whose risk score remained statistically significant after adjustment for prognostic factors in multivariate analysis were selected in more than 60% of cases were associated with shorter progression-free survival. CONCLUSIONS We found an eight-gene signature associated with a higher risk of rapid relapse after treatment in patients with oligodendrogliomas. This finding could help clinicians identify patients who need more intensive treatment.
Collapse
Affiliation(s)
- Julia Gilhodes
- Biostatistics & Health Data Science Unit, Institut Claudius Regaud, Oncopole Claudius Regaud-Institut Universitaire du Cancer Toulouse, 31100 Toulouse, France
| | - Adèle Meola
- Department of Radiation Oncology, Institut Claudius Regaud, Oncopole Claudius Regaud-Institut Universitaire du Cancer Toulouse, 31100 Toulouse, France
| | - Bastien Cabarrou
- Biostatistics & Health Data Science Unit, Institut Claudius Regaud, Oncopole Claudius Regaud-Institut Universitaire du Cancer Toulouse, 31100 Toulouse, France
| | - Guillaume Peyraga
- Department of Radiation Oncology, Institut Claudius Regaud, Oncopole Claudius Regaud-Institut Universitaire du Cancer Toulouse, 31100 Toulouse, France
| | - Caroline Dehais
- Neuro-Oncology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne University, 75006 Paris, France
| | - Dominique Figarella-Branger
- Department of Pathology, Centre Hospitalo-Universitaire Timone, AP-HM, GlioME Team, Institute of Neurophysiopathology, Aix-Marseille University, 13385 Marseille, France
| | - François Ducray
- Neuro-Oncology Department, Hospices Civils de Lyon, Université Lyon 1, CRCL, UMR Inserm 1052_CNRS 5286, 69003 Lyon, France
| | | | | | - Emmanuelle Uro-Coste
- Department of Pathology, CHU Toulouse, Institut Universitaire du Cancer Toulouse, 31100 Toulouse, France
- Centre de Recherches Contre le Cancer de Toulouse, INSERM U1037, 31100 Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiation Oncology, Institut Claudius Regaud, Oncopole Claudius Regaud-Institut Universitaire du Cancer Toulouse, 31100 Toulouse, France
- Centre de Recherches Contre le Cancer de Toulouse, INSERM U1037, 31100 Toulouse, France
| |
Collapse
|
9
|
Oikawa D, Shimizu K, Tokunaga F. Pleiotropic Roles of a KEAP1-Associated Deubiquitinase, OTUD1. Antioxidants (Basel) 2023; 12:antiox12020350. [PMID: 36829909 PMCID: PMC9952104 DOI: 10.3390/antiox12020350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Protein ubiquitination, which is catalyzed by ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, and ubiquitin ligases, is a crucial post-translational modification to regulate numerous cellular functions in a spatio-temporal-specific manner. The human genome encodes ~100 deubiquitinating enzymes (DUBs), which antagonistically regulate the ubiquitin system. OTUD1, an ovarian tumor protease (OTU) family DUB, has an N-terminal-disordered alanine-, proline-, glycine-rich region (APGR), a catalytic OTU domain, and a ubiquitin-interacting motif (UIM). OTUD1 preferentially hydrolyzes lysine-63-linked ubiquitin chains in vitro; however, recent studies indicate that OTUD1 cleaves various ubiquitin linkages, and is involved in the regulation of multiple cellular functions. Thus, OTUD1 predominantly functions as a tumor suppressor by targeting p53, SMAD7, PTEN, AKT, IREB2, YAP, MCL1, and AIF. Furthermore, OTUD1 regulates antiviral signaling, innate and acquired immune responses, and cell death pathways. Similar to Nrf2, OTUD1 contains a KEAP1-binding ETGE motif in its APGR and regulates the reactive oxygen species (ROS)-mediated oxidative stress response and cell death. Importantly, in addition to its association with various cancers, including multiple myeloma, OTUD1 is involved in acute graft-versus-host disease and autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. Thus, OTUD1 is an important DUB as a therapeutic target for a variety of diseases.
Collapse
|