1
|
Sadeghi L, Merrien M, Björkholm M, Österborg A, Sander B, Claesson HE, Wright APH. Targeting Tumor Microenvironment Interactions in Chronic Lymphocytic Leukemia Using Leukotriene Inhibitors. Int J Mol Sci 2025; 26:2209. [PMID: 40076826 PMCID: PMC11899779 DOI: 10.3390/ijms26052209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells depend on microenvironment niches for proliferation and survival. The adhesion of tumor cells to stromal cells in such niches triggers the activation of signaling pathways crucial for their survival, including B-cell receptor (BCR) signaling. While inhibitors of Bruton's tyrosine kinase (BTKi) have shown efficacy in patients with CLL by disrupting these interactions, acquired resistance and toxicity remain a challenge during long-term therapy. Thus, identifying additional therapeutic modalities is important. Previously, we demonstrated that 5-lipoxygenase (5-LOX) pathway inhibitors reduced mantle cell lymphoma (MCL) cell adhesion to stromal cells, motivating us to investigate their potential in the context of CLL. We employed an ex vivo co-culture model to study CLL cell adhesion to stromal cells in the absence and presence of 5-LOX pathway inhibitors (zileuton and MK886) as well as the BTKi ibrutinib that was included for comparative purposes. Our findings demonstrated that different CLL samples adhere to stromal cells differentially. We observed a variable decrease in CLL cell adhesion to stromal cells following the inhibition of the 5-LOX pathway across a spectrum of patient samples that was distinct to the spectrum for ibrutinib. Positive and negative correlations were shown between the clinical and genetic features of the CLL samples and their level of adherence to stromal cells in both the absence and presence of the tested inhibitors. These results suggest the 5-LOX pathway as a candidate for assessment as a new therapeutic target in CLL.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.M.); (B.S.)
| | - Magnus Björkholm
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden; (M.B.); (H.-E.C.)
| | - Anders Österborg
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden;
- Department of Hematology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.M.); (B.S.)
| | - Hans-Erik Claesson
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden; (M.B.); (H.-E.C.)
| | - Anthony P. H. Wright
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| |
Collapse
|
2
|
Perez Almeria CV, Otun O, Schlimgen R, Lamme TD, Crudden C, Youssef N, Musli L, Jenjak S, Bobkov V, Drube J, Hoffmann C, Volkman BF, Granier S, Bechara C, Siderius M, Heukers R, Schafer CT, Smit MJ. Constitutive activity of an atypical chemokine receptor revealed by inverse agonistic nanobodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621790. [PMID: 39574661 PMCID: PMC11580867 DOI: 10.1101/2024.11.04.621790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Chemokine stimulation of atypical chemokine receptor 3 (ACKR3) does not activate G proteins but recruits arrestins. It is a chemokine scavenger that indirectly influences responses by restricting the availability of CXCL12, an agonist shared with the canonical receptor CXCR4. ACKR3 is upregulated in numerous disorders. Due to limited insights in chemokine-activated ACKR3 signaling, it is unclear how ACKR3 contributes to pathological phenotypes. One explanation may be that high constitutive activity of ACKR3 drives non-canonical signaling through a basal receptor state. Here we characterize the constitutive action of ACKR3 using novel inverse agonistic nanobodies to suppress basal activity. These new tools promote an inactive receptor conformation which decreased arrestin engagement and inhibited constitutive internalization. Basal, non-chemotactic, breast cancer cell motility was also suppressed, suggesting a role for ACKR3 in this process. The basal receptor activity in pathophysiology may provide a new therapeutic approach for targeting ACKR3.
Collapse
Affiliation(s)
- Claudia V Perez Almeria
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Omolade Otun
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Roman Schlimgen
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Thomas D Lamme
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Caitrin Crudden
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Noureldine Youssef
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Lejla Musli
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Shawn Jenjak
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Vladimir Bobkov
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Julia Drube
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Marco Siderius
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raimond Heukers
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
- QVQ Holding BV, Utrecht, the Netherlands
| | - Christopher T Schafer
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Department of Chemistry & Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Claesson HE, Sjöberg J, Xu D, Björkholm M. Expression and putative biological roles of lipoxygenases and leukotriene receptors in leukemia and lymphoma. Prostaglandins Other Lipid Mediat 2024; 174:106871. [PMID: 38992854 DOI: 10.1016/j.prostaglandins.2024.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
This mini-review addresses lipoxygenases and receptors for leukotrienes in hematological malignancies. Potential novel biomarkers and drug targets in leukemia and B-cell lymphoma are discussed.
Collapse
Affiliation(s)
- Hans-Erik Claesson
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| | - Jan Sjöberg
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden; NDA Group, Stockholm, Sweden.
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| | - Magnus Björkholm
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Isci D, Kuppens A, Scalisi J, Cokaiko J, D'Uonnolo G, Wantz M, Szpakowska M, Chevigné A, Rogister B, Neirinckx V. Heterogeneous expression of the atypical chemokine receptor ACKR3 in glioblastoma patient-derived tissue samples and cell cultures. Sci Rep 2024; 14:21925. [PMID: 39300240 PMCID: PMC11412975 DOI: 10.1038/s41598-024-73064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive glial tumor of the adult brain, associated with invariably fatal outcome, and a deeper understanding of the underlying malignant mechanisms is necessary to address the current therapeutic failure. We previously demonstrated the role of the CXCL12/CXCR4 axis in GBM cell migration and resistance to ionizing radiation. The atypical chemokine receptor ACKR3, responsible for CXCL12 scavenging, was previously suggested as additional important player in the context of GBM. Following validation of the detection tools, we observed that ACKR3 is expressed within GBM patient tumor tissue, distributed in diverse cell types. In contrast to CXCR4, ACKR3 expression in patient-derived stem-like cells (GSCs) remains however low, while ACKR3 gene expression by tumor cells appears to be modulated by the in-vivo environment. Using overexpression models, we also showed that in vitro ACKR3 had no significant direct effect on cell proliferation or invasion. Altogether, these results suggest that in vitro ACKR3 plays a minor role in malignant GBM cell biology and that its expression is possibly regulated by in-vivo influences. The subtle and multifaceted functions ACKR3 could exert in GBM should therefore only be tackled within a comprehensive tumor microenvironment considering tumoral but also non-tumoral cells.
Collapse
Affiliation(s)
- Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Amandine Kuppens
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Joshua Scalisi
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Julie Cokaiko
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - May Wantz
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Neurology Department, University Hospital, University of Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
5
|
Ghodsi A, Hidalgo A, Libreros S. Lipid mediators in neutrophil biology: inflammation, resolution and beyond. Curr Opin Hematol 2024; 31:175-192. [PMID: 38727155 PMCID: PMC11301784 DOI: 10.1097/moh.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Acute inflammation is the body's first defense in response to pathogens or injury. Failure to efficiently resolve the inflammatory insult can severely affect tissue homeostasis, leading to chronic inflammation. Neutrophils play a pivotal role in eradicating infectious pathogens, orchestrating the initiation and resolution of acute inflammation, and maintaining physiological functions. The resolution of inflammation is a highly orchestrated biochemical process, partially modulated by a novel class of endogenous lipid mediators known as specialized pro-resolving mediators (SPMs). SPMs mediate their potent bioactions via activating specific cell-surface G protein-coupled receptors (GPCR). RECENT FINDINGS This review focuses on recent advances in understanding the multifaceted functions of SPMs, detailing their roles in expediting neutrophil apoptosis, promoting clearance by macrophages, regulating their excessive infiltration at inflammation sites, orchestrating bone marrow deployment, also enhances neutrophil phagocytosis and tissue repair mechanisms under both physiological and pathological conditions. We also focus on the novel role of SPMs in regulating bone marrow neutrophil functions, differentiation, and highlight open questions about SPMs' functions in neutrophil heterogeneity. SUMMARY SPMs play a pivotal role in mitigating excessive neutrophil infiltration and hyperactivity within pathological milieus, notably in conditions such as sepsis, cardiovascular disease, ischemic events, and cancer. This significant function highlights SPMs as promising therapeutic agents in the management of both acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anita Ghodsi
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Stephania Libreros
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| |
Collapse
|
6
|
Ma Z, Zhou F, Jin H, Wu X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024; 13:1027. [PMID: 38920657 PMCID: PMC11201928 DOI: 10.3390/cells13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (Z.M.); (F.Z.); (H.J.)
| |
Collapse
|
7
|
Chen X, Song QL, Ji R, Wang JY, Cao ML, Guo DY, Zhang Y, Yang J. JPT2 Affects Trophoblast Functions and Macrophage Polarization and Metabolism, and Acts as a Potential Therapeutic Target for Recurrent Spontaneous Abortion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306359. [PMID: 38417123 PMCID: PMC11040346 DOI: 10.1002/advs.202306359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Indexed: 03/01/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a pregnancy-related condition with complex etiology. Trophoblast dysfunction and abnormal macrophage polarization and metabolism are associated with RSA; however, the underlying mechanisms remain unknown. Jupiter microtubule-associated homolog 2 (JPT2) is essential for calcium mobilization; however, its role in RSA remains unclear. In this study, it is found that the expression levels of JPT2, a nicotinic acid adenine dinucleotide phosphate-binding protein, are decreased in the villous tissues of patients with RSA and placental tissues of miscarried mice. Mechanistically, it is unexpectedly found that abnormal JPT2 expression regulates trophoblast function and thus involvement in RSA via c-Jun N-terminal kinase (JNK) signaling, but not via calcium mobilization. Specifically, on the one hand, JPT2 deficiency inhibits trophoblast adhesion, migration, and invasion by inhibiting the JNK/atypical chemokine receptor 3 axis. On the other hand, trophoblast JPT2 deficiency contributes to M1 macrophage polarization by promoting the accumulation of citrate and reactive oxygen species via inhibition of the JNK/interleukin-6 axis. Self-complementary adeno-associated virus 9-JPT2 treatment alleviates embryonic resorption in abortion-prone mice. In summary, this study reveals that JPT2 mediates the remodeling of the immune microenvironment at the maternal-fetal interface, suggesting its potential as a therapeutic target for RSA.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical CenterRenmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| | - Qian Lin Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Rui Ji
- Reproductive Medical CenterRenmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| | - Jia Yu Wang
- Reproductive Medical CenterRenmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| | - Ming Liang Cao
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Duan Ying Guo
- Department of GynecologyLonggang District People's Hospital of ShenzhenShenzhen518172China
| | - Yan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Jing Yang
- Reproductive Medical CenterRenmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| |
Collapse
|
8
|
Dovrolis N, Katifelis H, Grammatikaki S, Zakopoulou R, Bamias A, Karamouzis MV, Souliotis K, Gazouli M. Inflammation and Immunity Gene Expression Patterns and Machine Learning Approaches in Association with Response to Immune-Checkpoint Inhibitors-Based Treatments in Clear-Cell Renal Carcinoma. Cancers (Basel) 2023; 15:5637. [PMID: 38067341 PMCID: PMC10705515 DOI: 10.3390/cancers15235637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Despite the rapid evolution of targeted therapies, immunotherapy with checkpoint inhibition (ICI) as well as combination therapies, the cure of metastatic ccRCC (mccRCC) is infrequent, while the optimal use of the various novel agents has not been fully clarified. With the different treatment options, there is an essential need to identify biomarkers to predict therapeutic efficacy and thus optimize therapeutic approaches. This study seeks to explore the diversity in mRNA expression profiles of inflammation and immunity-related circulating genes for the development of biomarkers that could predict the effectiveness of immunotherapy-based treatments using ICIs for individuals with mccRCC. Gene mRNA expression was tested by the RT2 profiler PCR Array on a human cancer inflammation and immunity crosstalk kit and analyzed for differential gene expression along with a machine learning approach for sample classification. A number of mRNAs were found to be differentially expressed in mccRCC with a clinical benefit from treatment compared to those who progressed. Our results indicate that gene expression can classify these samples with high accuracy and specificity.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Stamatiki Grammatikaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, 22100 Corinth, Greece;
- Health Policy Institute, 15123 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| |
Collapse
|
9
|
Melgrati S, Gerken OJ, Artinger M, Radice E, Szpakowska M, Chevigné A, D’Uonnolo G, Antonello P, Thelen S, Pelczar P, Legler DF, Thelen M. GPR182 is a broadly scavenging atypical chemokine receptor influencing T-independent immunity. Front Immunol 2023; 14:1242531. [PMID: 37554323 PMCID: PMC10405735 DOI: 10.3389/fimmu.2023.1242531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Immune responses highly depend on the effective trafficking of immune cells into and within secondary lymphoid organs (SLOs). Atypical chemokine receptors (ACKRs) scavenge chemokines to eliminate them from the extracellular space, thereby generating gradients that guide leukocytes. In contrast to canonical chemokine receptors, ACKRs do not induce classical intracellular signaling that results in cell migration. Recently, the closest relative of ACKR3, GPR182, has been partially deorphanized as a potential novel ACKR. We confirm and extend previous studies by identifying further ligands that classify GPR182 as a broadly scavenging chemokine receptor. We validate the "atypical" nature of the receptor, wherein canonical G-protein-dependent intracellular signaling is not activated following ligand stimulation. However, β-arrestins are required for ligand-independent internalization and chemokine scavenging whereas the C-terminus is in part dispensable. In the absence of GPR182 in vivo, we observed elevated chemokine levels in the serum but also in SLO interstitium. We also reveal that CXCL13 and CCL28, which do not bind any other ACKR, are bound and efficiently scavenged by GPR182. Moreover, we found a cooperative relationship between GPR182 and ACKR3 in regulating serum CXCL12 levels, and between GPR182 and ACKR4 in controlling CCL20 levels. Furthermore, we unveil a new phenotype in GPR182-KO mice, in which we observed a reduced marginal zone (MZ), both in size and in cellularity, and thus in the T-independent antibody response. Taken together, we and others have unveiled a novel, broadly scavenging chemokine receptor, which we propose should be named ACKR5.
Collapse
Affiliation(s)
- Serena Melgrati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver J. Gerken
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Marc Artinger
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Giulia D’Uonnolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paola Antonello
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pawel Pelczar
- University of Basel, Center for Transgenic Models, Basel, Switzerland
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, Konstanz, Germany
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|