1
|
Luo Y, Wan F, Zhang Z, Qin Z, Ren Y. The Role of Chemokine (C-C Motif) Ligand 7 (CCL7) in Hepatocellular Carcinoma: Expression, Function, and Mechanisms. Cancer Med 2025; 14:e70701. [PMID: 40062588 PMCID: PMC11891931 DOI: 10.1002/cam4.70701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
AIM AHepatocellular carcinoma (HCC) is a malignant neoplasm characterized by a poor prognosis, with its incidence rising globally. Chemokine (C-C motif) ligand 7 (CCL7), a chemokine protein, has been implicated in the progression of various cancers. Nonetheless, the specific role of CCL7 in HCC has yet to be elucidated. This study seeks to examine the expression and functional role of CCL7 in the context of HCC. MATERIALS & METHODS Western blot and immunohistochemistry were used to detect the expression of CCL7 in HCC tissues and cell lines. Cell Counting Kit 8 (CCK8) assay, clonogenic assay, and transwell assay were performed to examine the effects of CCL7 on SNU-878 cells. Immunofluorescence was used to analyze the expression of proteins associated with epithelial interstitial transformation (EMT). Western blot was used to detect the activation of the PI3K/AKT pathway. In vivo tumorigenesis experiments were performed to assess the role of CCL7 in HCC tumorigenesis. RESULTS The results showed that the expression of CCL7 was up-regulated in HCC tissues, and exogenous CCL7 promoted the proliferation, migration, invasion, and EMT of SNU-878 cells and VEGF secretion by SNU-878 cells. Furthermore, CCL7 stimulated the activation of the PI3K/AKT pathway. Further analysis revealed that CCL7 targeted CCR1 and CCR2 to enhance the growth, and metastasis of SNU-878 cells and VEGF secretion by SNU-878 cells. CCR1/CCR2 silencing prevented CCL7 from activating the PI3K/AKT signaling pathway in SNU-878 cells. Moreover, CCL7 facilitated HCC tumorigenesis and VEGF expression in vivo. CONCLUSION Our findings indicate that CCL7 plays a promoting role in HCC growth and tumorigenesis, potentially via targeting CCR1 and CCR2 and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yangkun Luo
- Department of RadiologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
- Department of RadiologySichuan Province Orthopedic HospitalChengduSichuanChina
| | - Fei Wan
- Department of RadiologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Zhao Zhang
- Department of Hepatobiliary SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Zujun Qin
- Department of PathologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yongjun Ren
- Department of Hepatobiliary SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| |
Collapse
|
2
|
Song JB, Guo SS, Gao WJ, Yang ZP, Tian ZL. Cellular Membrane Protein GRINA is Highly Expressed and Associated with Survival Outcomes in Liver Cancer Patients. Curr Med Sci 2025; 45:122-136. [PMID: 40011365 DOI: 10.1007/s11596-025-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC), a lethal cancer with high global mortality, may be targeted through ferroptosis, an iron-dependent form of cell death. Despite its potential, the prognostic value of ferroptosis in HCC is underexplored. METHODS Our study leveraged single-cell and bulk sequencing datasets to identify ferroptosis-related genes and developed a prognostic model via Cox and LASSO regression analyses. Survival and mutation analyses led to the creation of a nomogram for predicting patient prognosis. Furthermore, we investigated the role of GRINA, a ferroptosis-related gene, through functional assays, including cell proliferation, colony formation, and metastatic potential analyses. We also assessed mitochondrial abnormalities, intracellular iron, and ROS levels in GRINA-knockdown cells. RESULTS The developed ferroptosis-related model classified HCC patients into risk groups, revealing notable survival disparities. High-risk patients presented increased immune checkpoint gene expression. The nomogram revealed robust prognostic accuracy. Additionally, we found that GRINA suppression reduced HCC cell proliferation, colony formation, and metastatic potential. Cells with GRINA knockdown presented mitochondrial abnormalities and increased intracellular iron and ROS levels. CONCLUSIONS By analysing multiomics sequencing data, we established a connection between ferroptosis-related risk groups and the tumor immune microenvironment. These findings provide novel insights into the role of ferroptosis in HCC and suggest that GRINA inhibition is a potential therapeutic strategy, leading to mitochondrial damage and the induction of ferroptosis in HCC cell lines.
Collapse
Affiliation(s)
- Jun-Bo Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shan-Shan Guo
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, 710032, China
| | - Wen-Jie Gao
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Zhi-Peng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ze-Lin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wang W, Hashimi B, Wang P. Targeting ferroptosis: the role of non-coding RNAs in hepatocellular carcinoma progression and therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03791-y. [PMID: 39820644 DOI: 10.1007/s00210-025-03791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
One of the most common tumors is hepatocellular carcinoma (HCC), and the prognosis for late-stage HCC is still not good. It is anticipated that improved outcomes would result from a deeper comprehension of the pathophysiology of HCC. Ferroptosis as a new discovered cell death type is linked to the progression of HCC and may be crucial for its detection, prevention, therapy, and prognosis. Numerous studies suggest that epigenetic alterations mediated by non-coding RNAs (ncRNA) might influence cancer cell susceptibility to ferroptosis. This study elucidates the processes of ferroptosis and delineates the paths by which ncRNAs influence HCC by modulating ferroptosis. Furthermore, it offers significant insights into ferroptosis-associated ncRNAs, intending to discover novel therapeutic approaches for HCC. It also explores innovative concepts for the future use of ncRNA-based ferroptosis-targeted therapeutics.
Collapse
Affiliation(s)
- Weijia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People's Hospital), Shandong Province, China
| | - Behishta Hashimi
- Department of Midwifery, Jahan Institute of Health Sciences, Kabul, Afghanistan
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
4
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 PMCID: PMC12055240 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
5
|
Du W, Tang Z, Du A, Yang Q, Xu R. Bidirectional crosstalk between the epithelial-mesenchymal transition and immunotherapy: A bibliometric study. Hum Vaccin Immunother 2024; 20:2328403. [PMID: 38502119 PMCID: PMC10956627 DOI: 10.1080/21645515.2024.2328403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapy has recently attracted considerable attention. However, currently, a thorough analysis of the trends associated with the epithelial-mesenchymal transition (EMT) and immunotherapy is lacking. In this study, we used bibliometric tools to provide a comprehensive overview of the progress in EMT-immunotherapy research. A total of 1,302 articles related to EMT and immunotherapy were retrieved from the Web of Science Core Collection (WOSCC). The analysis indicated that in terms of the volume of research, China was the most productive country (49.07%, 639), followed by the United States (16.89%, 220) and Italy (3.6%, 47). The United States was the most influential country according to the frequency of citations and citation burstiness. The results also suggested that Frontiers in Immunotherapy can be considered as the most influential journal with respect to the number of articles and impact factors. "Immune infiltration," "bioinformatics analysis," "traditional Chinese medicine," "gene signature," and "ferroptosis" were found to be emerging keywords in EMT-immunotherapy research. These findings point to potential new directions that can deepen our understanding of the mechanisms underlying the combined effects of immunotherapy and EMT and help develop strategies for improving immunotherapy.
Collapse
Affiliation(s)
- Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Zemin Tang
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qinglong Yang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of General Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| |
Collapse
|
6
|
Chi ZC. Progress in research of ferroptosis in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:699-715. [DOI: 10.11569/wcjd.v32.i10.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic and oxidation-damaged regulated cell death caused by iron accumulation, lipid peroxidation, and subsequent plasma membrane rupture. Ferroptosis is the main cause of tissue damage caused by iron overload and lipid peroxidation. With the deepening of the research in recent years, the understanding of the occurrence and treatment of tumors has made a major breakthrough, which brings new strategies for anti-cancer treatment. This paper reviews the relationship between ferroptosis and gastrointestinal tumors, the research of ferroptosis in cancer prevention and treatment, and the role of ferroptosis in the prevention and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
7
|
Shu YJ, Lao B, Qiu YY. Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer. World J Gastrointest Oncol 2024; 16:2335-2349. [PMID: 38994128 PMCID: PMC11236230 DOI: 10.4251/wjgo.v16.i6.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
As a highly aggressive tumor, the pathophysiological mechanism of primary liver cancer has attracted much attention. In recent years, factors such as ferroptosis regulation, lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer, providing a new perspective for understanding the development of liver cancer. Ferroptosis regulation, lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer. The regulation of ferroptosis is involved in apoptosis and necrosis, affecting cell survival and death. Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells. Metabolic abnormalities, especially the disorders of glucose and lipid metabolism, directly affect the proliferation and growth of liver cancer cells. Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes. The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer, and reduce the risk of disease by adjusting the metabolic process. This review focuses on the key roles of ferroptosis regulation, lipid peroxidation and metabolic abnormalities in this process.
Collapse
Affiliation(s)
- Yu-Jie Shu
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Bo Lao
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
8
|
Jian H, Zhang J, Liu Z, Zhang Z, Zeng P. Amentoflavone reverses epithelial-mesenchymal transition in hepatocellular carcinoma cells by targeting p53 signalling pathway axis. J Cell Mol Med 2024; 28:e18442. [PMID: 38842135 PMCID: PMC11154840 DOI: 10.1111/jcmm.18442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.
Collapse
Affiliation(s)
| | | | - Zhuo Liu
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese MedicineHunan Academy of Chinese MedicineHunanChina
| | - Zhen Zhang
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese MedicineHunan Academy of Chinese MedicineHunanChina
| | - Pu‐Hua Zeng
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese MedicineHunan Academy of Chinese MedicineHunanChina
| |
Collapse
|
9
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
10
|
Yao B, Lu Y, Li Y, Bai Y, Wei X, Yang Y, Yao D. BCLAF1-induced HIF-1α accumulation under normoxia enhances PD-L1 treatment resistances via BCLAF1-CUL3 complex. Cancer Immunol Immunother 2023; 72:4279-4292. [PMID: 37906282 PMCID: PMC10700218 DOI: 10.1007/s00262-023-03563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Bcl-2-associated transcription factor-1 (BCLAF1), an apoptosis-regulating protein of paramount significance, orchestrates the progression of various malignancies. This study reveals increased BCLAF1 expression in hepatocellular carcinoma (HCC) patients, in whom elevated BCLAF1 levels are linked to escalated tumor grades and diminished survival rates. Moreover, novel BCLAF1 expression is particularly increased in HCC patients who were not sensitive to the combined treatment of atezolizumab and bevacizumab, but not in patients who had tumors that responded to the combined regimen. Notably, overexpression of BCLAF1 increases HCC cell proliferation in vitro and in vivo, while the conditioned medium derived from cells overexpressing BCLAF1 strikingly enhances the tube-formation capacity of human umbilical vein endothelial cells. Furthermore, compelling evidence demonstrates that BCLAF1 attenuates the expression of prolyl hydroxylase domain protein 2 (PHD2) and governs the stability of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions without exerting any influence on transcription, as determined by Western blot and RT‒qPCR analyses. Subsequently, employing coimmunoprecipitation and immunofluorescence, we validated the reciprocal interaction between BCLAF1 and Cullin 3 (CUL3), through which BCLAF1 actively upregulates the ubiquitination and degradation of PHD2. The Western blot and RT‒qPCR results suggests that programmed death ligand-1 (PD-L1) is one of the downstream responders to HIF-1α in HCC. Thus, we reveal the pivotal role of BCLAF1 in promoting PD-L1 transcription and, through binding to CUL3, in promoting the accumulation of HIF-1α under normoxic conditions, thereby facilitating the ubiquitination and degradation of PHD2.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixue Bai
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyu Wei
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuanyuan Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Demao Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Kim R, Taylor D, Vonderheide RH, Gabrilovich DI. Ferroptosis of immune cells in the tumor microenvironment. Trends Pharmacol Sci 2023; 44:542-552. [PMID: 37380530 DOI: 10.1016/j.tips.2023.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Ferroptosis is a distinct form of cell death driven by the accumulation of peroxidized lipids. Characterized by alterations in redox lipid metabolism, ferroptosis has been implicated in a variety of cellular processes, including cancer. Induction of ferroptosis is considered a novel way to kill tumor cells, especially cells resistant to radiation and chemotherapy. However, in recent years, a new paradigm has emerged. In addition to promoting tumor cell death, ferroptosis causes potent immune suppression in the tumor microenvironment (TME) by affecting both innate and adaptive immune responses. In this review, we discuss the dual role of ferroptosis in the antitumor and protumorigenic functions of immune cells in cancer. We suggest strategies for targeting ferroptosis, taking into account its ambiguous role in cancer.
Collapse
Affiliation(s)
- Rina Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Devon Taylor
- AstraZeneca, R&D Oncology, Gaithersburg, MD, USA
| | - Robert H Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Yeh CT, Liao GY, Emura T. Sensitivity Analysis for Survival Prognostic Prediction with Gene Selection: A Copula Method for Dependent Censoring. Biomedicines 2023; 11:797. [PMID: 36979776 PMCID: PMC10045003 DOI: 10.3390/biomedicines11030797] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Prognostic analysis for patient survival often employs gene expressions obtained from high-throughput screening for tumor tissues from patients. When dealing with survival data, a dependent censoring phenomenon arises, and thus the traditional Cox model may not correctly identify the effect of each gene. A copula-based gene selection model can effectively adjust for dependent censoring, yielding a multi-gene predictor for survival prognosis. However, methods to assess the impact of various types of dependent censoring on the multi-gene predictor have not been developed. In this article, we propose a sensitivity analysis method using the copula-graphic estimator under dependent censoring, and implement relevant methods in the R package "compound.Cox". The purpose of the proposed method is to investigate the sensitivity of the multi-gene predictor to a variety of dependent censoring mechanisms. In order to make the proposed sensitivity analysis practical, we develop a web application. We apply the proposed method and the web application to a lung cancer dataset. We provide a template file so that developers can modify the template to establish their own web applications.
Collapse
Affiliation(s)
- Chih-Tung Yeh
- Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan
| | - Gen-Yih Liao
- Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan
| | - Takeshi Emura
- Biostatistics Center, Kurume University, Kurume 830-0011, Japan
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
| |
Collapse
|
13
|
Hou S, Wang D, Yuan X, Yuan X, Yuan Q. Identification of biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in alcoholic hepatitis by bioinformatics and experimental verification. Front Immunol 2023; 14:1146693. [PMID: 37090703 PMCID: PMC10117880 DOI: 10.3389/fimmu.2023.1146693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Backgrounds Alcoholic hepatitis (AH) is a major health problem worldwide. There is increasing evidence that immune cells, iron metabolism and copper metabolism play important roles in the development of AH. We aimed to explore biomarkers that are co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Methods GSE28619 and GSE103580 datasets were integrated, CIBERSORT algorithm was used to analyze the infiltration of 22 types of immune cells and GSVA algorithm was used to calculate ferroptosis and cuproptosis scores. Using the "WGCNA" R package, we established a gene co-expression network and analyzed the correlation between M1 macrophages, ferroptosis and cuproptosis scores and module characteristic genes. Subsequently, candidate genes were screened by WGCNA and differential expression gene analysis. The LASSO-SVM analysis was used to identify biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis. Finally, we validated these potential biomarkers using GEO datasets (GSE155907, GSE142530 and GSE97234) and a mouse model of AH. Results The infiltration level of M1 macrophages was significantly increased in AH patients. Ferroptosis and cuproptosis scores were also increased in AH patients. In addition, M1 macrophages, ferroptosis and cuproptosis were positively correlated with each other. Combining bioinformatics analysis with a mouse model of AH, we found that ALDOA, COL3A1, LUM, THBS2 and TIMP1 may be potential biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Conclusion We identified 5 potential biomarkers that are promising new targets for the treatment and diagnosis of AH patients.
Collapse
Affiliation(s)
- Shasha Hou
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Dan Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaxia Yuan
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Qi Yuan,
| |
Collapse
|