1
|
Xu J, Cao S, Xu Y, Chen H, Nian S, Li L, Liu Q, Xu W, Ye Y, Yuan Q. The role of DC subgroups in the pathogenesis of asthma. Front Immunol 2024; 15:1481989. [PMID: 39530090 PMCID: PMC11550972 DOI: 10.3389/fimmu.2024.1481989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs), specialized antigen-presenting cells of the immune system, act as immunomodulators in diseases of the immune system, including asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Moreover, most strategies for treating asthma with relevant therapeutic agents that target DCs have been initiated from the study of DC function. We discussed the pathogenesis of asthma (including T2-high and T2-low), the roles played by different DC subpopulations in the pathogenesis of asthma, and the therapeutic strategies centered around DCs. This study will provide a scientific theoretical basis for current asthma treatment, provide theoretical guidance and research ideas for developing and studying therapeutic drugs targeting DC, and provide more therapeutic options for the patient population with poorly controlled asthma symptoms.
Collapse
Affiliation(s)
- Jiangang Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuxian Cao
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Han Chen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Siji Nian
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Liu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenfeng Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Chang YS, Lee JM, Huang K, Vagts CL, Ascoli C, Edafetanure-Ibeh R, Huang Y, Cherian RA, Sarup N, Warpecha SR, Hwang S, Goel R, Turturice BA, Schott C, Martinez MH, Finn PW, Perkins DL. Network Analysis of Dysregulated Immune Response to COVID-19 mRNA Vaccination in Hemodialysis Patients. Vaccines (Basel) 2024; 12:1146. [PMID: 39460313 PMCID: PMC11511558 DOI: 10.3390/vaccines12101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION End-stage renal disease (ESRD) results in immune dysfunction that is characterized by both systemic inflammation and immune incompetence, leading to impaired responses to vaccination. METHODS To unravel the complex regulatory immune interplay in ESRD, we performed the network-based transcriptomic profiling of ESRD patients on maintenance hemodialysis (HD) and matched healthy controls (HCs) who received the two-dose regimen of the COVID-19 mRNA vaccine BNT162b2. RESULTS Co-expression networks based on blood transcription modules (BTMs) of genes differentially expressed between the HD and HC groups revealed co-expression patterns that were highly similar between the two groups but weaker in magnitude in the HD compared to HC subjects. These networks also showed weakened coregulation between BTMs within the dendritic cell (DC) family as well as with other BTM families involved with innate immunity. The gene regulatory networks of the most enriched BTMs, likewise, highlighted weakened targeting by transcription factors of key genes implicated in DC, natural killer (NK) cell, and T cell activation and function. The computational deconvolution of immune cell populations further bolstered these findings with discrepant proportions of conventional DC subtypes, NK T cells, and CD8+ T cells in HD subjects relative to HCs. CONCLUSION Altogether, our results indicate that constitutive inflammation in ESRD compromises the activation of DCs and NK cells, and, ultimately, their mediation of downstream lymphocytes, leading to a delayed but intact immune response to mRNA vaccination.
Collapse
Affiliation(s)
- Yi-Shin Chang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jessica M. Lee
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kai Huang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christen L. Vagts
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Christian Ascoli
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Russell Edafetanure-Ibeh
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Yue Huang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Ruth A. Cherian
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Nandini Sarup
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Samantha R. Warpecha
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Sunghyun Hwang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Rhea Goel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Benjamin A. Turturice
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Cody Schott
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Montserrat H. Martinez
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Patricia W. Finn
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - David L. Perkins
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Schmidt T, Dahlberg A, Berthold E, Król P, Arve-Butler S, Rydén E, Najibi SM, Mossberg A, Bengtsson AA, Kahn F, Månsson B, Kahn R. Synovial monocytes contribute to chronic inflammation in childhood-onset arthritis via IL-6/STAT signalling and cell-cell interactions. Front Immunol 2023; 14:1190018. [PMID: 37283752 PMCID: PMC10239926 DOI: 10.3389/fimmu.2023.1190018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Monocytes are key effector cells in inflammatory processes. We and others have previously shown that synovial monocytes in childhood-onset arthritis are activated. However, very little is known about how they contribute to disease and attain their pathological features. Therefore, we set out to investigate the functional alterations of synovial monocytes in childhood-onset arthritis, how they acquire this phenotype, and whether these mechanisms could be used to tailorize treatment. Methods The function of synovial monocytes was analysed by assays believed to reflect key pathological events, such as T-cell activation-, efferocytosis- and cytokine production assays using flow cytometry in untreated oligoarticular juvenile idiopathic arthritis (oJIA) patients (n=33). The effect of synovial fluid on healthy monocytes was investigated through mass spectrometry and functional assays. To characterize pathways induced by synovial fluid, we utilized broad-spectrum phosphorylation assays and flow cytometry, as well as inhibitors to block specific pathways. Additional effects on monocytes were studied through co-cultures with fibroblast-like synoviocytes or migration in transwell systems. Results Synovial monocytes display functional alterations with inflammatory and regulatory features, e.g., increased ability to induce T-cell activation, resistance to cytokine production following activation with LPS and increased efferocytosis. In vitro, synovial fluid from patients induced the regulatory features in healthy monocytes, such as resistance to cytokine production and increased efferocytosis. IL-6/JAK/STAT signalling was identified as the main pathway induced by synovial fluid, which also was responsible for a majority of the induced features. The magnitude of synovial IL-6 driven activation in monocytes was reflected in circulating cytokine levels, reflecting two groups of low vs. high local and systemic inflammation. Remaining features, such as an increased ability to induce T-cell activation and markers of antigen presentation, could be induced by cell-cell interactions, specifically via co-culture with fibroblast-like synoviocytes. Conclusions Synovial monocytes in childhood-onset arthritis are functionally affected and contribute to chronic inflammation, e.g., via promoting adaptive immune responses. These data support a role of monocytes in the pathogenesis of oJIA and highlight a group of patients more likely to benefit from targeting the IL-6/JAK/STAT axis to restore synovial homeostasis.
Collapse
Affiliation(s)
- Tobias Schmidt
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Alma Dahlberg
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Elisabet Berthold
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Petra Król
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sabine Arve-Butler
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Emilia Rydén
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Seyed Morteza Najibi
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anki Mossberg
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Anders A. Bengtsson
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Kahn
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Bengt Månsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|