1
|
Liu C, Huang X, Li S, Ji W, Luo T, Liang J, Lv Y. M2 macrophage-derived exosomes reverse TGF-β1-induced epithelial mesenchymal transformation in BEAS-2B cells via the TGF-βRI/Smad2/3 signaling pathway. Eur J Med Res 2025; 30:271. [PMID: 40211426 PMCID: PMC11987241 DOI: 10.1186/s40001-025-02516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/26/2025] [Indexed: 04/13/2025] Open
Abstract
INTRODUCTION Airway remodeling in bronchial asthma can be inhibited by disrupting the epithelial mesenchymal transition (EMT) of activated airway epithelial cells. Exosomes, as key mediators of intercellular communication, have been implicated in the pathophysiology of asthma-related airway inflammation, remodeling, and hyperresponsiveness. This study aimed to investigate the role of M2 macrophage-derived exosomes (M2φ-exos) in modulating TGF-β1-induced EMT in airway epithelial (BEAS-2B) cells and elucidate the underlying molecular mechanism, if any. METHODS THP-1 cells were induced to differentiate into M2 macrophages via phorbol 12-myristate 13-acetate (PMA) and IL-4. Exosomes were subsequently isolated and purified via ultracentrifugation. M2φ-exos expression was characterized by protein marker levels, transmission electron microscopy imaging, and nanoparticle tracking analysis. TGF-β1-induced BEAS-2B cells were exposed to M2φ-exos to determine the latter's effects. RESULTS THP-1 cells were successfully differentiated into M2 macrophages, as confirmed by in vitro flow cytometry. The isolated exosomes presented typical cup-shaped structures and expressed CD81 and TSG101. TGF-β1 induction altered the morphological characteristics of BEAS-2B cells and activated the TGF-βRI/Smad2/3 signaling pathway, leading to increased expression of Snail, Vimentin and Collagen 1 and decreased expression of E-cadherin. After exosome or SB431542 induction, TGF-β1-induced EMT was reversed. GW4869, an exosome release inhibitor, exhibited the ability to block the beneficial effects of exosomes. CONCLUSION M2Φ-exos inhibited EMT in BEAS-2B cells through the TGF-βRI/Smad2/3 signaling pathway. This novel insight into the role of M2Φ-exos in modulating EMT may have important implications for the beneficial effects of asthma, particularly in addressing airway remodeling.
Collapse
Affiliation(s)
- Chao Liu
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Xiaolin Huang
- Dental Implant and Restoration Centre, Zhongshan Stomatological Hospital, Zhongshan, Guangdong, China
| | - Siqi Li
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Wentao Ji
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Tian Luo
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Jianping Liang
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People'S Hospital of Shunde), Foshan, Guangdong, China.
| |
Collapse
|
2
|
Plichta J, Panek M. Role of the TGF-β cytokine and its gene polymorphisms in asthma etiopathogenesis. FRONTIERS IN ALLERGY 2025; 6:1529071. [PMID: 39949968 PMCID: PMC11821632 DOI: 10.3389/falgy.2025.1529071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Transforming growth factor beta (TGF-β) is a pluripotent cytokine expressed by all cells of the human body which plays important roles in maintaining homeostasis and allowing for proper individual development. Disturbances in TGF-β signaling contribute to the development of many diseases and disorders, including cancer and organ fibrosis. One of the diseases with the best-characterized correlation between TGF-β action and etiopathogenesis is asthma. Asthma is the most common chronic inflammatory disease of the lower and upper respiratory tract, characterized by bronchial hyperresponsiveness to a number of environmental factors, leading to bronchospasm and reversible limitation of expiratory flow. TGF-β, in particular TGF-β1, is a key factor in the etiopathogenesis of asthma. TGF-β1 concentration in bronchoalveolar lavage fluid samples is elevated in atopic asthma, and TGF-β expression is increased in asthmatic bronchial samples. The expression of all TGF-β isoforms is affected by a number of single nucleotide polymorphisms found in the genes encoding these cytokines. Some of the SNPs that alter the level of TGF-β expression may be associated with the occurrence and severity of symptoms of asthma and other diseases. The TGF-β gene polymorphisms, which are the subject of this paper, are potential diagnostic factors. If properly used, these polymorphisms can facilitate the early and precise diagnosis of asthma, allowing for the introduction of appropriate therapy and reduction of asthma exacerbation frequency.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
3
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
4
|
Kraik K, Tota M, Laska J, Łacwik J, Paździerz Ł, Sędek Ł, Gomułka K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024; 13:1271. [PMID: 39120302 PMCID: PMC11311642 DOI: 10.3390/cells13151271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) represent chronic inflammatory respiratory disorders that, despite having distinct pathophysiological underpinnings, both feature airflow obstruction and respiratory symptoms. A critical component in the pathogenesis of each condition is the transforming growth factor-β (TGF-β), a multifunctional cytokine that exerts varying influences across these diseases. In asthma, TGF-β is significantly involved in airway remodeling, a key aspect marked by subepithelial fibrosis, hypertrophy of the smooth muscle, enhanced mucus production, and suppression of emphysema development. The cytokine facilitates collagen deposition and the proliferation of fibroblasts, which are crucial in the structural modifications within the airways. In contrast, the role of TGF-β in COPD is more ambiguous. It initially acts as a protective agent, fostering tissue repair and curbing inflammation. However, prolonged exposure to environmental factors such as cigarette smoke causes TGF-β signaling malfunction. Such dysregulation leads to abnormal tissue remodeling, marked by excessive collagen deposition, enlargement of airspaces, and, thus, accelerated development of emphysema. Additionally, TGF-β facilitates the epithelial-to-mesenchymal transition (EMT), a process contributing to the phenotypic alterations observed in COPD. A thorough comprehension of the multifaceted role of TGF-β in asthma and COPD is imperative for elaborating precise therapeutic interventions. We review several promising approaches that alter TGF-β signaling. Nevertheless, additional studies are essential to delineate further the specific mechanisms of TGF-β dysregulation and its potential therapeutic impacts in these chronic respiratory diseases.
Collapse
Affiliation(s)
- Krzysztof Kraik
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Paździerz
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
5
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
6
|
Deka H, Siddique MA, Ahmed SJ, Mahanta P, Mahanta P. Evaluation of IL-4 and IL-13 Single Nucleotide Polymorphisms and Their Association With Childhood Asthma and Its Severity: A Hospital-Based Case-Control Study. Cureus 2024; 16:e57465. [PMID: 38699097 PMCID: PMC11065120 DOI: 10.7759/cureus.57465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Asthma is a common, chronic, atopic respiratory disease that is on the rise among children and adults worldwide. Various environmental, genetic, and biological interactions contribute to the surge in susceptibility to this disease. Interleukin (IL) genes, particularly IL-4 and IL-13, have been linked to asthma pathogenesis. The present study aims to investigate the genetic aberrations, specifically single nucleotide polymorphisms (SNPs) of IL-4 and IL-13, and their association with childhood asthma and its severity. METHODS An unmatched hospital-based case-control study was conducted in a tertiary care hospital in Assam, India. The sample size was calculated to be 120 (60 cases and 60 controls) using the Epi Info software version 7.2 (Centers for Disease Control and Prevention, Atlanta, GA, USA), assuming a confidence interval of 95%, a power of the study at 80%, a ratio of control to cases as 1, a proportion of controls with exposure at 22%, and a proportion of cases with exposure at 46%. A total of 53 clinically diagnosed cases of childhood asthma in the age range of three to 12 years and 39 healthy controls free from respiratory diseases and having no history of asthma and/or allergy of the same age group attending a tertiary care hospital were included in the study. Children who never had asthma or allergies and who did not suffer from any upper or lower respiratory infections for the previous four weeks were considered controls. Prior informed consent and ethical clearance were obtained. Very seriously ill cases and controls were excluded from the study. The genetic investigation used polymerase chain reaction (PCR), followed by restriction fragment length polymorphism (RFLP), to discover SNPs in the IL-4 and IL-13 genes. Sequencing analysis was done for the cases with +2044 G>A of the IL-13 gene in relation to the severity of the disease. The difference in the proportions of specific SNPs between cases and controls was analyzed using the χ2 test (a p-value of <0.05 was considered significant). RESULTS Both the rs2070874 and rs2243250 polymorphisms of IL-4 showed no statistically significant associations. The mutation of the IL-13 gene in 1111C>T was higher among cases than controls. Both genotypic and allelic distributions of the +2044G>A polymorphism of the IL-13 gene revealed a significant association (p<0.05) with the severity of the disease. CONCLUSION Genetic aberrations in SNPs of IL-4 and IL-13 are prevalent among the pediatric patients of the study region. The SNP +2044G>A of IL-13 is instrumental in disease manifestation and severity among the pediatric population of the study region.
Collapse
Affiliation(s)
| | | | | | | | - Putul Mahanta
- Forensic Medicine and Toxicology, Nalbari Medical College and Hospital, Nalbari, IND
| |
Collapse
|
7
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
8
|
Giombi F, Pace GM, Pirola F, Cerasuolo M, Ferreli F, Mercante G, Spriano G, Canonica GW, Heffler E, Ferri S, Puggioni F, Paoletti G, Malvezzi L. Airways Type-2 Related Disorders: Multiorgan, Systemic or Syndemic Disease? Int J Mol Sci 2024; 25:730. [PMID: 38255804 PMCID: PMC10815382 DOI: 10.3390/ijms25020730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic rhinosinusitis (CRS) has recently undergone a significant paradigm shift, moving from a phenotypical classification towards an "endotype-based" definition that places more emphasis on clinical and therapeutic aspects. Similar to other airway diseases, like asthma, most cases of CRS in developed countries exhibit a dysregulated type-2 immune response and related cytokines. Consequently, the traditional distinction between upper and lower airways has been replaced by a "united airway" perspective. Additionally, type-2 related disorders extend beyond respiratory boundaries, encompassing conditions beyond the airways, such as atopic dermatitis. This necessitates a multidisciplinary approach. Moreover, consideration of possible systemic implications is crucial, particularly in relation to sleep-related breathing diseases like Obstructive Sleep Apnoea Syndrome (OSAS) and the alteration of systemic inflammatory mediators such as nitric oxide. The trends in epidemiological, economic, and social burden are progressively increasing worldwide, indicating syndemic characteristics. In light of these insights, this narrative review aims to present the latest evidence on respiratory type-2 related disorders, with a specific focus on CRS while promoting a comprehensive perspective on the "united airways". It also introduces a novel concept: viewing these conditions as a multiorgan, systemic, and syndemic disease.
Collapse
Affiliation(s)
- Francesco Giombi
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
| | - Gian Marco Pace
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
| | - Francesca Pirola
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
| | - Michele Cerasuolo
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
- Otorhinolaryngology Head & Neck Surgery Unit, Casa di Cura Humanitas San Pio X, Via Francesco Nava 31, 20159 Milan, Italy
| | - Fabio Ferreli
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
| | - Giuseppe Mercante
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
| | - Giuseppe Spriano
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Sebastian Ferri
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Francesca Puggioni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Luca Malvezzi
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (F.G.); (F.P.); (M.C.); (F.F.); (G.M.); (G.S.); (L.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (G.W.C.); (E.H.); (S.F.); (F.P.); (G.P.)
- Otorhinolaryngology Head & Neck Surgery Unit, Casa di Cura Humanitas San Pio X, Via Francesco Nava 31, 20159 Milan, Italy
| |
Collapse
|
9
|
Mateusz M, Seweryn KM, Janusz S, Piotr K, Panek MG. Assessment of the effectiveness of the peptide inhibitor homologous to the transforming growth factor β cytokine blocking the TGFβRI/TGFβRII receptor complex-pilot study. Clin Transl Allergy 2024; 14:e12320. [PMID: 38282199 PMCID: PMC10758017 DOI: 10.1002/clt2.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND A key player in the fibrotic process is the transforming growth factor β (TGF-β) which enhances extracellular matrix production by increasing the transcription of matrix proteins. The cytokine TGF-β first binds to the TGFβRII receptor (dimer), resulting in the recruitment of the TGFβRI receptor (dimer). The complex thus formed leads to the phosphorylation of the kinase domain of TGFβRI, which in turn results in activation of the Smad pathway. This is therefore a targeted pathway for research into the application of peptide inhibitors in blocking the TGF-β-Smad signaling pathway. The aim of this study was to design a peptide inhibitor (homologous to the cytokine TGF-β) which, after binding to the TGFβRI/TGFβRII receptor, would block the cytokine binding and thus prevent the formation of an activating complex. METHODS Preliminary work on the design and synthesis of inhibitors for TGFβRI/TGFβRII has allowed us to identify and describe five key regions of the TGF-β-TGFβRI/TGFβRII interface. The following five peptide inhibitors were synthesized for Region 1: 1.1 ALDAAYCFR, 1.2 LDAAYCFRN, 1.3 DAAYCFRNV, 1.4 AAYCFRNVQ, 1.5 AYCFRNVQD. The expression of the SEAP reporter gene, Smad2, Smad3, Smad4, and JNK1 gene was measured using quantitative real-time polymerase chain reaction. RESULTS For Region 1 peptide inhibitors tested for TGFβRI/TGFβRII, reduced SEAP (reporter gene) expression was observed in cells of the MFB-F11 line, which suggests inhibited the formation of cytokine-receptor complexes. CONCLUSIONS For IP1_2, 1_3 and 1_5 Region 1 peptides tested for TGFβRI/TGFβRII, reduced cytokine-receptor signal by adding newly designed inhibitors. The study revealed an impact of these peptide inhibitors on the reduction of mRNA expression of Smad2, Smad3, Smad4 and JNK1 genes.
Collapse
Affiliation(s)
- Marynowski Mateusz
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzLodzkiePoland
| | | | - Szemraj Janusz
- Department of Medical BiochemistryMedical University of LodzLodzPoland
| | - Kuna Piotr
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzLodzkiePoland
| | - Michał Gabriel Panek
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzLodzkiePoland
| |
Collapse
|
10
|
Frum T, Hsu PP, Hein RFC, Conchola AS, Zhang CJ, Utter OR, Anand A, Zhang Y, Clark SG, Glass I, Sexton JZ, Spence JR. Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. NPJ Regen Med 2023; 8:48. [PMID: 37689780 PMCID: PMC10492838 DOI: 10.1038/s41536-023-00325-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro. AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Peggy P Hsu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Charles J Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia R Utter
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abhinav Anand
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yi Zhang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sydney G Clark
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Frum T, Hsu PP, Hein RFC, Conchola AS, Zhang CJ, Utter OR, Anand A, Zhang Y, Clark SG, Glass I, Sexton JZ, Spence JR. Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539573. [PMID: 37205521 PMCID: PMC10187311 DOI: 10.1101/2023.05.05.539573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro . AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro .
Collapse
|