1
|
Paduano S, Granata M, Turchi S, Modenese A, Galante P, Poggi A, Marchesi I, Frezza G, Dervishaj G, Vivoli R, Verri S, Marchetti S, Gobba F, Bargellini A. Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy. Antibodies (Basel) 2023; 12:77. [PMID: 38131799 PMCID: PMC10740768 DOI: 10.3390/antib12040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Factors associated with SARS-CoV-2 infection risk are still debated. This case-control study aims to investigate the possible relationship between SARS-CoV-2 infection, evaluated through antibody response, and the main sociodemographic, occupational, clinical-anamnestic, and biochemical factors in a population of Modena province (Northern Italy), mainly workers. Both workers who voluntarily joined the screening campaign proposed by companies and self-referred individuals who underwent serological testing were enrolled. Subjects with antibody positivity were recruited as cases (n = 166) and subjects tested negative (n = 239) as controls. A questionnaire on sociodemographic, occupational, and clinical data was administered through telephone interviews. Serum zinc/iron/copper/chromium/nickel, vitamins D/B12, folates, triglycerides, and LDL/HDL/total cholesterol were measured. Cases lived more often in urban areas (61.8% vs. 57%). Cases and controls did not differ significantly by working macrocategories, but the percentage of workers in the ceramic sector was higher among cases. Low adherence to preventive measures in the workplace was more frequent among seropositives. Folate concentration was significantly lower among cases. Therefore, adequate folate levels, living in rural areas, and good adherence to preventive strategies seem protective against infection. Workers in the ceramic sector seem to be at greater risk; specific factors involved are not defined, but preventive interventions are needed.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Michele Granata
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Sara Turchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Pasquale Galante
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alessandro Poggi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giulia Dervishaj
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Roberto Vivoli
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | - Sara Verri
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | | | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| |
Collapse
|
2
|
Buck AM, Deitchman AN, Takahashi S, Lu S, Goldberg SA, Bodansky A, Kung A, Hoh R, Williams MC, Kerbleski M, Maison DP, Deveau TM, Munter SE, Lombardo J, Wrin T, Petropoulos CJ, Durstenfeld MS, Hsue PY, Daniel Kelly J, Greenhouse B, Martin JN, Deeks SG, Peluso MJ, Henrich TJ. The breadth of the neutralizing antibody response to original SARS-CoV-2 infection is linked to the presence of Long COVID symptoms. J Med Virol 2023; 95:e29216. [PMID: 37988251 PMCID: PMC10754238 DOI: 10.1002/jmv.29216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/23/2023]
Abstract
The associations between longitudinal dynamics and the breadth of SARS-CoV-2 neutralizing antibody (nAb) response with various Long COVID phenotypes before vaccination are not known. The capacity of antibodies to cross-neutralize a variety of viral variants may be associated with ongoing pathology and persistent symptoms. We measured longitudinal neutralizing and cross-neutralizing antibody responses to pre- and post-SARS-CoV-2 Omicron variants in participants infected early in the COVID-19 pandemic, before widespread rollout of SARS-CoV-2 vaccines. Cross-sectional regression models adjusted for clinical covariates and longitudinal mixed-effects models were used to determine the impact of the breadth and rate of decay of neutralizing responses on the development of Long COVID symptoms, as well as Long COVID phenotypes. We identified several novel relationships between SARS-CoV-2 antibody neutralization and the presence of Long COVID symptoms. Specifically, we show that, although nAb responses to the original, infecting strain of SARS-CoV-2 were not associated with Long COVID in cross-sectional analyses, cross-neutralization ID50 levels to the Omicron BA.5 variant approximately 4 months following acute infection was independently and significantly associated with greater odds of Long COVID and with persistent gastrointestinal and neurological symptoms. Longitudinal modeling demonstrated significant associations in the overall levels and rates of decay of neutralization capacity with Long COVID phenotypes. A higher proportion of participants had antibodies capable of neutralizing Omicron BA.5 compared with BA.1 or XBB.1.5 variants. Our findings suggest that relationships between various immune responses and Long COVID are likely complex but may involve the breadth of antibody neutralization responses.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States
| | - Saki Takahashi
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Aaron Bodansky
- Division of Pediatric Critical Care Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Andrew Kung
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Meghann C. Williams
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Marian Kerbleski
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - David P. Maison
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - James Lombardo
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, United States
| | | | - Matthew S. Durstenfeld
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Bryan Greenhouse
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Steven G. Deeks
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Michael J. Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Sutandhio S, Furukawa K, Kurahashi Y, Marini MI, Effendi GB, Hasegawa N, Ishimaru H, Nishimura M, Arii J, Mori Y. Fourth mRNA vaccination increases cross-neutralizing antibody titers against SARS-CoV-2 variants, including BQ.1.1 and XBB, in a very elderly population. J Infect Public Health 2023; 16:1064-1072. [PMID: 37196370 DOI: 10.1016/j.jiph.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Omicron variants with immune evasion have emerged, and they continue to mutate rapidly, raising concerns about the weakening of vaccine efficacy, and the very elderly populations are vulnerable to Coronavirus Disease 2019 (COVID-19). Therefore, to investigate the effect of multiple doses of mRNA vaccine for the newly emerged variants on these populations, cross-neutralizing antibody titers were examined against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, including BQ.1.1 and XBB. METHODS Blood samples were taken from residents at four long-term care facilities in Hyogo prefecture, Japan (median age, 91 years), after 3rd (n = 67) and 4th (n = 48) mRNA vaccinations, from April to October 2022. A live virus microneutralization assay was performed to determine the neutralizing antibody titers in participants' sera. RESULTS After 3rd vaccination, cross-neutralizing antibody prevalence against conventional (D614G) virus, Delta, Omicron BA.2, BA.5, BA.2.75, BQ.1.1, and XBB were 100%, 97%, 81%, 51%, 67%, 4%, and 21%, respectively. After 4th vaccination, the antibody positivity rates increased to 100%, 100%, 98%, 79%, 92%, 31%, and 52%, respectively. The 4th vaccination significantly increased cross-neutralizing antibody titers against all tested variants. CONCLUSION The positivity rates for BQ.1.1 and XBB increased after 4th vaccination, although the titer value was lower than those of BA.5 and BA.2.75. Considering the rapid mutation of viruses and the efficacy of vaccines, it may be necessary to create a system that can develop vaccines suitable for each epidemic in consideration of the epidemic of the virus.
Collapse
Affiliation(s)
- Silvia Sutandhio
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Koichi Furukawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yukiya Kurahashi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Maria Istiqomah Marini
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Gema Barlian Effendi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Natsumi Hasegawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hanako Ishimaru
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
4
|
Buck AM, Deitchman AN, Takahashi S, Lu S, Goldberg SA, Hoh R, Williams MC, Kerbleski M, Deveau TM, Munter SE, Lombardo J, Wrin T, Petropoulos CJ, Durstenfeld MS, Hsue PY, Kelly JD, Greenhouse B, Martin JN, Deeks SG, Peluso MJ, Henrich TJ. The Breadth of the Neutralizing Antibody Response to Original SARS-CoV-2 Infection is Linked to the Presence of Long COVID Symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287923. [PMID: 37034660 PMCID: PMC10081395 DOI: 10.1101/2023.03.30.23287923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Background The associations between longitudinal dynamics and the breadth of SARS-CoV-2 neutralizing antibody response with various Long COVID (LC) phenotypes prior to vaccination are not known. The capacity of antibodies to cross neutralize a variety of viral variants may be associated with ongoing pathology and persistent symptoms. Methods We measured longitudinal neutralizing and cross-neutralizing antibody responses to pre- and post-SARS-CoV-2 Omicron variants in participants infected during the early waves of the COVID-19 pandemic, prior to wide-spread rollout of SARS-CoV-2 vaccines. Cross sectional regression models adjusted for various clinical covariates and longitudinal mixed effects models were used to determine the impact of the breadth and rate of decay of neutralizing responses on the development of Long COVID symptoms in general, as well as LC phenotypes. Results We identified several novel relationships between SARS-CoV-2 antibody neutralization and the presence of LC symptoms. Specifically, we show that, although neutralizing antibody responses to the original, infecting strain of SARS-CoV-2 were not associated with LC in cross-sectional analyses, cross-neutralization ID50 levels to the Omicron BA.5 variant approximately 4 months following acute infection was independently and significantly associated with greater odds of LC and with persistent gastrointestinal and neurological symptoms. Longitudinal modeling demonstrated significant associations in the overall levels and rates of decay of neutralization capacity with LC phenotypes. A higher proportion of participants had antibodies capable of neutralizing Omicron BA.5 compared with BA.1 or XBB.1.5 variants. Conclusions Our findings suggest that relationships between various immune responses and LC are likely complex but may involve the breadth of antibody neutralization responses.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, United States
| | - Saki Takahashi
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Meghann C. Williams
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Marian Kerbleski
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| | - James Lombardo
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, United States
| | | | - Matthew S. Durstenfeld
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California San Francisco, San Francisco, CA, United States
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Bryan Greenhouse
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Steven G. Deeks
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Michael J. Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Zhao G, Zhang Z, Ding Y, Hou J, Liu Y, Zhang M, Sui C, Wang L, Xu X, Gao X, Kou Z. A DNA Vaccine Encoding the Full-Length Spike Protein of Beta Variant (B.1.351) Elicited Broader Cross-Reactive Immune Responses against Other SARS-CoV-2 Variants. Vaccines (Basel) 2023; 11:513. [PMID: 36992097 PMCID: PMC10054764 DOI: 10.3390/vaccines11030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The SARS-CoV-2 pandemic remains an ongoing threat to global health with emerging variants, especially the Omicron variant and its sub-lineages. Although large-scale vaccination worldwide has delivered outstanding achievements for COVID-19 prevention, a declining effectiveness to a different extent in emerging SARS-CoV-2 variants was observed in the vaccinated population. Vaccines eliciting broader spectrum neutralizing antibodies and cellular immune responses are urgently needed and important. To achieve this goal, rational vaccine design, including antigen modeling, screening and combination, vaccine pipelines, and delivery, are keys to developing a next-generation COVID-19 vaccine. In this study, we designed several DNA constructs based on codon-optimized spike coding regions of several SARS-CoV-2 variants and analyzed their cross-reactive antibodies, including neutralizing antibodies, and cellular immune responses against several VOCs in C57BL/6 mice. The results revealed that different SARS-CoV-2 VOCs induced different cross-reactivity; pBeta, a DNA vaccine encoding the spike protein of the Beta variant, elicited broader cross-reactive neutralizing antibodies against other variants including the Omicron variants BA.1 and BA.4/5. This result demonstrates that the spike antigen from the Beta variant potentially serves as one of the antigens for multivalent vaccine design and development against variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co., Ltd., Suzhou 215000, China
| | | | | | | | | | | | | | | | | | | | - Zhihua Kou
- Advaccine Biopharmaceutics (Suzhou) Co., Ltd., Suzhou 215000, China
| |
Collapse
|
6
|
Sapir T, Averch Z, Lerman B, Bodzin A, Fishman Y, Maitra R. COVID-19 and the Immune Response: A Multi-Phasic Approach to the Treatment of COVID-19. Int J Mol Sci 2022; 23:ijms23158606. [PMID: 35955740 PMCID: PMC9369212 DOI: 10.3390/ijms23158606] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral agent that causes Coronavirus disease 2019 (COVID-19), a disease that causes flu-like symptoms that, when exacerbated, can have life-threatening consequences. COVID-19 has been linked to persistent symptoms, sequelae, and medical complications that can last months after the initial infection. This systematic review aims to elucidate the innate and adaptive immune mechanisms involved and identify potential characteristics of COVID-19 pathology that may increase symptom duration. We also describe he three different stages of COVID-19—viral replication, immune hyperactivation, and post-acute sequelae—as well as each phase’s corresponding immune response. Finally, we use this multiphasic approach to describe different treatment approaches for each of the three stages—antivirals, immunosuppressants and monoclonal antibodies, and continued immunosuppressants—to fully curate the treatment to the stage of disease.
Collapse
|
7
|
Ren Z, Nishimura M, Tjan LH, Furukawa K, Kurahashi Y, Sutandhio S, Aoki K, Hasegawa N, Arii J, Uto K, Matsui K, Sato I, Saegusa J, Godai N, Takeshita K, Yamamoto M, Nagashima T, Mori Y. Large-scale serosurveillance of COVID-19 in Japan: Acquisition of neutralizing antibodies for Delta but not for Omicron and requirement of booster vaccination to overcome the Omicron's outbreak. PLoS One 2022; 17:e0266270. [PMID: 35381036 PMCID: PMC8982849 DOI: 10.1371/journal.pone.0266270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Continuous appearance of SARS-CoV-2 variants and mass vaccination have been intricately influencing on the COVID-19 situation. To elucidate the current status in Japan, we analyzed totally 2,000 sera in August (n = 1,000) and December (n = 1,000) 2021 collected from individuals who underwent a health check-up. The anti-N seropositive rate were 2.1% and 3.9% in August and December 2021, respectively, demonstrating a Delta variant endemic during that time; it was approximately twofold higher than the rate based on the PCR-based diagnosis. The anti-S seropositive rate was 38.7% in August and it reached 90.8% in December, in concordance with the vaccination rate in Japan. In the December cohort, 78.7% of the sera showed neutralizing activity against the Delta variant, whereas that against the Omicron was much lower at 36.6%. These analyses revealed that effective immunity against the Delta variant was established in December 2021, however, prompt three-dose vaccination is needed to overcome Omicron’s outbreak.
Collapse
Affiliation(s)
- Zhenxiao Ren
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Lidya Handayani Tjan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Koichi Furukawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yukiya Kurahashi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Silvia Sutandhio
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kaito Aoki
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Natsumi Hasegawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenichi Uto
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Keiji Matsui
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Itsuko Sato
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Jun Saegusa
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Nonoka Godai
- Department of Life Science, Laboratory of Macromolecular Dynamics and X-ray Crystallography, University of Hyogo, Hyogo, Japan
- Advanced Photon Technology Division, Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Hyogo, Japan
| | - Kohei Takeshita
- Advanced Photon Technology Division, Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Hyogo, Japan
| | - Masaki Yamamoto
- Department of Life Science, Laboratory of Macromolecular Dynamics and X-ray Crystallography, University of Hyogo, Hyogo, Japan
- Advanced Photon Technology Division, Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Hyogo, Japan
| | | | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|