1
|
Date S, Bhatt LK. Targeting high-mobility-group-box-1-mediated inflammation: a promising therapeutic approach for myocardial infarction. Inflammopharmacology 2025; 33:767-784. [PMID: 39487941 DOI: 10.1007/s10787-024-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Myocardial ischemia, resulting from coronary artery blockage, precipitates cardiac arrhythmias, myocardial structural changes, and heart failure. The pathophysiology of MI is mainly based on inflammation and cell death, which are essential in aggravating myocardial ischemia and reperfusion injury. Emerging research highlights the functionality of high mobility group box-1, a non-histone nucleoprotein functioning as a chromosomal stabilizer and inflammatory mediator. HMGB1's release into the extracellular compartment during ischemia acts as damage-associated molecular pattern, triggering immune reaction by pattern recognition receptors and exacerbating tissue inflammation. Its involvement in signaling pathways like PI3K/Akt, TLR4/NF-κB, and RAGE/HMGB1 underscores its significance in promoting angiogenesis, apoptosis, and reducing inflammation, which is crucial for MI treatment strategies. This review highlights the complex function of HMGB1 in the pathogenesis of myocardial infarction by summarizing novel findings on the protein in ischemic situations. Understanding the mechanisms underlying HMGB1 could widen the way to specific treatments that minimize the severity of MI and enhance patient outcomes.
Collapse
Affiliation(s)
- Shrutika Date
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Dong Y, Wang T, Wu H. The role of cytokines from salivary gland epithelial cells in the immunopathology of Sjögren's syndrome. Front Immunol 2024; 15:1443455. [PMID: 39346911 PMCID: PMC11427401 DOI: 10.3389/fimmu.2024.1443455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
In the pathogenesis and progression of Sjögren's syndrome (SS), hematopoietic cells in the peripheral circulation, tissue-resident immune cells, and parenchymal cells of salivary gland tissues (such as epithelial cells, endothelial cells, fibroblasts, etc.) all play crucial roles. These diverse cells form intricate networks and interact with each other, leading to tissue destruction and persistent chronic inflammation, ultimately causing irreversible damage in glandular function. Among these, salivary gland epithelial cells (SGECs) consistently hold a key position, characterized by their functions in expressing co-stimulatory and antigen-presenting molecules and secreting pro-inflammatory cytokines and chemokines. Moreover, SGECs actively engage in and facilitate the development of specific pathological structures within the salivary gland, such as lymphoepithelial lesions (LELs) and tertiary lymphoid structures (TLSs), thereby substantially elevating the risk of mucosa-associated lymphoid tissue (MALT) lymphoma. Overall, SGECs are recognized for their essential and irreplaceable contributions to the pathogenesis of SS. This review article initially delves into the anatomical composition of salivary gland epithelial cells, subsequently focusing on elucidating the different cytokines derived from SGECs, encompassing chemokines, pro-inflammatory cytokines, anti-inflammatory cytokines, pro-survival cytokines, and damage-associated molecular patterns (DAMPs), to explore their key roles in the pathogenesis of SS.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Batnozic Varga M, Held M, Wagner J, Arvaj N, Sestan M, Sapina M, Kifer N, Grguric D, Crkvenac Gornik K, Gagro A, Frkovic M, Jelusic M. The Association of HMGB1 and RAGE Gene Polymorphisms with IgA Vasculitis. Biochem Genet 2024; 62:2268-2278. [PMID: 37902913 DOI: 10.1007/s10528-023-10536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/22/2023] [Indexed: 11/01/2023]
Abstract
High-mobility group box 1 (HMGB1) is a pleiotropic cytokine that propagates inflammation by its extracellular action of interacting with the receptor for advanced glycation end products (RAGE). Both HMGB1 and RAGE play multiple roles in the pathogenesis of a variety of inflammatory and autoimmune diseases. We investigated the association of five single-nucleotide polymorphisms (SNPs) of the HMGB1 gene (rs1412125, rs2249825, rs1045411, rs1060348, rs41369348) and four SNPs of the RAGE gene (rs1800624, rs1800625, rs2070600, rs3134940) with the susceptibility and clinical features of paediatric patients with IgA vasculitis (IgAV), also known as Henoch-Schönlein's purpura. This case‒control study included 103 children with IgAV (experimental group) and 150 age-matched healthy individuals (control group). The strength of the association between different groups and alleles or genotypes of HMGB1 and RAGE was estimated using odds ratios (ORs) and 95% confidence intervals (CIs). The HMGB1 polymorphisms rs41369348, rs1045411, rs2249825 and rs1412125 were associated with the development of generalized purpuric rash, and rs1412125 was associated with IgAV nephritis (IgAVN). The RAGE polymorphism rs2070600 might be linked to the development of arthritis in IgAV patients. There was no statistically significant association between the analysed polymorphisms and susceptibility to IgAV. This is the first study to propose an association between several HMGB1 and RAGE polymorphisms and different phenotypes in the clinical course of IgAV in a paediatric population. Further research on other polymorphisms of HMGB1 and RAGE should be conducted in a larger number of patients.
Collapse
Affiliation(s)
- Mateja Batnozic Varga
- Department of Paediatrics, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine Osijek, University Hospital Centre Osijek, Osijek, Croatia
| | - Martina Held
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nena Arvaj
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Sestan
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Matej Sapina
- Department of Paediatrics, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine Osijek, University Hospital Centre Osijek, Osijek, Croatia
| | - Nastasia Kifer
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Danica Grguric
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Kristina Crkvenac Gornik
- Department of Laboratory Diagnostics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Alenka Gagro
- Department of Paediatrics, Children's Hospital Zagreb, Zagreb, Croatia
| | - Marijan Frkovic
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Marija Jelusic
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
5
|
Yang Q, Li M, Hou Y, He H, Sun S. High-mobility group box 1 emerges as a therapeutic target for asthma. Immun Inflamm Dis 2023; 11:e1124. [PMID: 38156383 PMCID: PMC10739362 DOI: 10.1002/iid3.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved nonhistone nuclear protein found in the calf thymus and participates in a variety of intracellular processes such as DNA transcription, replication and repair. In the cytoplasm, HMGB1 promotes mitochondrial autophagy and is involved in in cellular stress response. Once released into the extracellular, HMGB1 becomes an inflammatory factor that triggers inflammatory responses and a variety of immune responses. In addition, HMGB1 binding with the corresponding receptor can activate the downstream substrate to carry out several biological effects. Meanwhile, HMGB1 is involved in various signaling pathways, such as the HMGB1/RAGE pathway, HMGB1/NF-κB pathway, and HMGB1/JAK/STAT pathway, which ultimately promote inflammation. Moreover, HMGB1 may be involved in the pathogenesis of asthma by regulating downstream signaling pathways through corresponding receptors and mediates a number of signaling pathways in asthma, such as HMGB1/TLR4/NF-κB, HMGB1/RAGE, HMGB1/TGF-β, and so forth. Accordingly, HMGB1 emerges as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Qianni Yang
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
- 2021 Class 2 of AnesthesiologyKunming Medical UniversityKunmingChina
| | - Min Li
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Huilin He
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Shibo Sun
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
6
|
Łuczak MW, Dżaman K, Zaręba Ł, Czerwaty K, Siewiera J, Głuszko A, Olszewska E, Brzost J, Kantor I, Szczepański MJ, Ludwig N. HMGB1 Carried by Small Extracellular Vesicles Potentially Plays a Role in Promoting Acquired Middle Ear Cholesteatoma. Diagnostics (Basel) 2023; 13:3469. [PMID: 37998605 PMCID: PMC10669961 DOI: 10.3390/diagnostics13223469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Cholesteatoma is a specific medical condition involving the abnormal, non-cancerous growth of skin-like tissue in the middle ear, potentially leading to a collection of debris and even infections. The receptor for advanced glycation (RAGE) and its ligand, high-mobility box 1 (HMGB1), are both known to be overexpressed in cholesteatoma and play a potential role in the pathogenesis of the disease. In this study, we investigated the role of small extracellular vesicles (sEVs) in carrying HMGB1 and inducing disease-promoting effects in cholesteatoma. No significant differences in the concentration of isolated sEVs in the plasma of cholesteatoma patients (n = 17) and controls (n = 22) were found (p > 0.05); however, cholesteatoma-derived sEVs carried significantly higher levels of HMGB1 (p < 0.05). In comparison to sEVs isolated from the plasma of controls, cholesteatoma-derived sEVs significantly enhanced keratinocyte proliferation and IL-6 production (p < 0.05), potentially by engaging multiple activation pathways including MAPKp44/p42, STAT3, and the NF-κB pathway. Thus, HMGB1(+) sEVs emerge as a novel factor potentially promoting cholesteatoma progression.
Collapse
Affiliation(s)
- Michał W. Łuczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906, USA;
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine-National Research Institute, 00-902 Warsaw, Poland;
| | - Alicja Głuszko
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Ewa Olszewska
- Department of Otolaryngology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Jacek Brzost
- Department of Otolaryngology, The Children’s Memorial Health Institute, 00-328 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Sun T, Dong C, Xiong S. Cardiomyocyte-derived HMGB1 takes a protective role in CVB3-induced viral myocarditis via inhibiting cardiac apoptosis. Immunol Cell Biol 2023; 101:735-745. [PMID: 37253434 DOI: 10.1111/imcb.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC) is characterized by immune cell infiltration and myocardial damage. High mobility group box 1 (HMGB1) is a highly conserved nuclear DNA-binding protein that participates in DNA replication, transcriptional regulation, repair response and inflammatory response in different disease models. To investigate the exact function of HMGB1 in CVB3-induced VMC, we crossed Hmgb1-floxed (Hmgb1f/f ) mice with mice carrying a suitable Cre recombinase transgenic strain to achieve conditional inactivation of the Hmgb1 gene in a cardiomyocyte-specific manner and to establish myocarditis. In this study, we found that cardiomyocyte-specific Hmgb1-deficient (Hmgb1f/f TgCre/+ ) mice exhibited exacerbated myocardial injury. Hmgb1-deficient cardiomyocytes may promote early apoptosis via the p53-mediated Bax mitochondrial pathway, as evidenced by the higher localization of p53 protein in the cytosol of Hmgb1-deficient cardiomyocytes upon CVB3 infection. Moreover, cardiomyocyte Hmgb1-deficient mice are more susceptible to cardiac dysfunction after infection. This study provides new insights into HMGB1 in VMC pathogenesis and a strategy for appropriate blocking of HMGB1 in the clinical treatment of VMC.
Collapse
Affiliation(s)
- Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Ma W, Zhu J, Bai L, Zhao P, Li F, Zhang S. The role of neutrophil extracellular traps and proinflammatory damage-associated molecular patterns in idiopathic inflammatory myopathies. Clin Exp Immunol 2023; 213:202-208. [PMID: 37289984 PMCID: PMC10361739 DOI: 10.1093/cei/uxad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of systemic autoimmune diseases characterized by immune-mediated muscle injury. Abnormal neutrophil extracellular traps (NETs) can be used as a biomarker of IIM disease activity, but the mechanism of NET involvement in IIMs needs to be elucidated. Important components of NETs, including high-mobility group box 1, DNA, histones, extracellular matrix, serum amyloid A, and S100A8/A9, act as damage-associated molecular patterns (DAMPs) to promote inflammation in IIMs. NETs can act on different cells to release large amounts of cytokines and activate the inflammasome, which can subsequently aggravate the inflammatory response. Based on the idea that NETs may be proinflammatory DAMPs of IIMs, we describe the role of NETs, DAMPs, and their interaction in the pathogenesis of IIMs and discuss the possible targeted treatment strategies in IIMs.
Collapse
Affiliation(s)
- Wenlan Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiarui Zhu
- Department of Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Bai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Peipei Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feifei Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Sigong Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Saaoud F, Shao Y, Cornwell W, Wang H, Rogers TJ, Yang X. Cigarette Smoke Modulates Inflammation and Immunity via Reactive Oxygen Species-Regulated Trained Immunity and Trained Tolerance Mechanisms. Antioxid Redox Signal 2023; 38:1041-1069. [PMID: 36017612 PMCID: PMC10171958 DOI: 10.1089/ars.2022.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Significance: Cigarette smoke (CS) is a prominent cause of morbidity and death and poses a serious challenge to the current health care system worldwide. Its multifaceted roles have led to cardiovascular, respiratory, immunological, and neoplastic diseases. Recent Advances: CS influences both innate and adaptive immunity and regulates immune responses by exacerbating pathogenic immunological responses and/or suppressing defense immunity. There is substantial evidence pointing toward a critical role of CS in vascular immunopathology, but a comprehensive and up-to-date review is lacking. Critical Issues: This review aims to synthesize novel conceptual advances on the immunomodulatory action of CS with a focus on the cardiovascular system from the following perspectives: (i) the signaling of danger-associated molecular pattern (DAMP) receptors contributes to CS modulation of inflammation and immunity; (ii) CS reprograms immunometabolism and trained immunity-related metabolic pathways in innate immune cells and T cells, which can be sensed by the cytoplasmic (cytosolic and non-nuclear organelles) reactive oxygen species (ROS) system in vascular cells; (iii) how nuclear ROS drive CS-promoted DNA damage and cell death pathways, thereby amplifying inflammation and immune responses; and (iv) CS induces endothelial cell (EC) dysfunction and vascular inflammation to promote cardiovascular diseases (CVDs). Future Directions: Despite significant progress in understanding the cellular and molecular mechanisms linking CS to immunity, further investigations are warranted to elucidate novel mechanisms responsible for CS-mediated immunopathology of CVDs; in particular, the research in redox regulation of immune functions of ECs and their fate affected by CS is still in its infancy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - William Cornwell
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas J. Rogers
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
In Silico Analysis of Ferroptosis-Related Genes and Its Implication in Drug Prediction against Fluorosis. Int J Mol Sci 2023; 24:ijms24044221. [PMID: 36835629 PMCID: PMC9961266 DOI: 10.3390/ijms24044221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Fluorosis is a serious global public health problem. Interestingly, so far, there is no specific drug treatment for the treatment of fluorosis. In this paper, the potential mechanisms of 35 ferroptosis-related genes in U87 glial cells exposed to fluoride were explored by bioinformatics methods. Significantly, these genes are involved in oxidative stress, ferroptosis, and decanoate CoA ligase activity. Ten pivotal genes were found by the Maximal Clique Centrality (MCC) algorithm. Furthermore, according to the Connectivity Map (CMap) and the Comparative Toxicogenomics Database (CTD), 10 possible drugs for fluorosis were predicted and screened, and a drug target ferroptosis-related gene network was constructed. Molecular docking was used to study the interaction between small molecule compounds and target proteins. Molecular dynamics (MD) simulation results show that the structure of the Celestrol-HMOX1 composite is stable and the docking effect is the best. In general, Celastrol and LDN-193189 may target ferroptosis-related genes to alleviate the symptoms of fluorosis, which may be effective candidate drugs for the treatment of fluorosis.
Collapse
|