1
|
Yang Y, Cheng K, Xu G. Novel approaches to primary membranous nephropathy: Beyond the KDIGO guidelines. Eur J Pharmacol 2024; 982:176928. [PMID: 39182551 DOI: 10.1016/j.ejphar.2024.176928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Primary membranous nephropathy (PMN) is an immune-mediated glomerular disease. Rituximab (RTX) is recommended as a first-line immunosuppressive therapy and shows high clinical efficacy, but the optimal doses remain controversial. Approximately 20%-40% of PMN patients experience RTX resistance and failure. Reduced bioavailability, RTX internalization and attack, anti-RTX antibody production, autoreactive B-cell reservoirs and chronic and irreversible renal damage may contribute to this problem. Therefore, new treatment modalities are needed to compensate for this deficit. New interventions and new dose combinations are being proposed. Multiple drug combination therapies show comparable clinical efficacy to conventional treatments by blocking the production of disease-causing antibodies in multiple directions, and can reduce single-agent doses without increasing adverse effects. New therapies that directly target B cells, plasma cells, and antibody production have shown encouraging results. In addition, new techniques for sweeping antibodies and chimeric antigen receptor T-cell therapy also may be promising strategies for PMN. Immunoadsorption could be used as an auxiliary choice for severe cases. This article explores new treatments for PMN and highlights possible mechanisms for potential new technologies that offer new ideas for treatment.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, PR China
| | - Kaiqi Cheng
- The Third Hospital of Nanchang, Nanchang, PR China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China.
| |
Collapse
|
2
|
Chen Y, Liu C, Shen H, Su P, Pang L, Zeng C, Cheng J. Bibliometric and visual analysis of membranous nephropathy literature from 2010 to 2023. Front Pharmacol 2024; 15:1426897. [PMID: 39329128 PMCID: PMC11424533 DOI: 10.3389/fphar.2024.1426897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background Membranous glomerulonephritis, also known as membranous nephropathy (MN), is a common cause of nephrotic syndrome in adults. Despite extensive research on MN, bibliometric studies on the subject are scarce. Therefore, this study aimed to provide a visual analysis of global trends in membranous nephropathy research over the past 13 years. Methods This study conducted a bibliometric and visual analysis of global trends in MN research from 2010 to 2023. Articles related to MN were retrieved from the Web of Science Core Collection (WoSCC) database. Tools such as CiteSpace and VOSviewer were utilized to analyze publications, countries, institutions, authors, publishing journals, co-cited references, and keywords to identify the current state and future trends in MN research. Results The analysis encompassed 1,624 publications, showing an annual increase from 2010 to 2023. The People's Republic of China emerged as the most active country in this field, while France's Sorbonne Universite and Institut National de la Sante et de la Recherche Medicale (Inserm) led in publication volume among academic institutions. Debiec Hanna stood out as the most prolific author. BMC Nephrology had the highest number of publications, making it the most favored journal in the field. The article with the greatest co-citation intensity was "Primary Membranous Nephropathy," a review published in 2017. Conclusion This study shows that there has been increasing interest in membranous nephropathy over the past 13 years. The most frequently encountered keywords were "membranous nephropathy" "nephrotic syndrome," and "glomerulonephritis." Analysis of emerging terms indicated that "a2 receptor antibody," "domain containing 7a," and "t cell" may remain prominent subjects of research in the forthcoming years. The findings highlight key research trends and areas of interest that can inform researchers, clinicians, and policymakers about the current state of MN research and help guide future research directions and clinical practice.
Collapse
Affiliation(s)
- Yirui Chen
- Wenzhou Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Wenzhou, China
| | - Chen Liu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongnan Shen
- Wenzhou Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Wenzhou, China
| | - Pingping Su
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Pang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Zeng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinguo Cheng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Tomas NM. Therapeutic targets in membranous nephropathy: plasma cells and complement. Clin Kidney J 2024; 17:sfae243. [PMID: 39239361 PMCID: PMC11375337 DOI: 10.1093/ckj/sfae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
Membranous nephropathy (MN) is an antibody-mediated autoimmune disease and the most common cause of nephrotic syndrome in adults. The discovery of phospholipase A2 receptor 1 (PLA2R1) as the first target antigen in patients with MN 15 years ago has led to a paradigm shift in the pathobiological understanding of this disease. Autoantibodies against PLA2R1 as well as thrombospondin type-1 domain-containing 7A, the second identified antigen in adults, were shown to be disease-causing and act through local activation of the complement system, primarily via the classical and lectin pathways. These findings indicate that both plasma cells, the main source of antibodies and autoantibodies, as well as the complement system, the main pathogenic effector mechanism in MN, are rational and pathogenesis-based treatment targets in MN. This review summarizes pathomechanistic and clinical evidence for and against plasma cell- and complement-targeted treatments in MN.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Zhang D, Sun D. Current progress in CAR-based therapy for kidney disease. Front Immunol 2024; 15:1408718. [PMID: 39234257 PMCID: PMC11372788 DOI: 10.3389/fimmu.2024.1408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Despite significant breakthroughs in the understanding of immunological and pathophysiological features for immune-mediated kidney diseases, a proportion of patients exhibit poor responses to current therapies or have been categorized as refractory renal disease. Engineered T cells have emerged as a focal point of interest as a potential treatment strategy for kidney diseases. By genetically modifying T cells and arming them with chimeric antigen receptors (CARs), effectively targeting autoreactive immune cells, such as B cells or antibody-secreting plasma cells, has become feasible. The emergence of CAR T-cell therapy has shown promising potential in directing effector and regulatory T cells (Tregs) to the site of autoimmunity, paving the way for effective migration, proliferation, and execution of suppressive functions. Genetically modified T-cells equipped with artificial receptors have become a novel approach for alleviating autoimmune manifestations and reducing autoinflammatory events in the context of kidney diseases. Here, we review the latest developments in basic, translational, and clinical studies of CAR-based therapies for immune-mediated kidney diseases, highlighting their potential as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
- Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Mei M, Zeng J, Liu Z, Gong L, Fang L, Hu Q, Huang S, Chai L, Chen X, Sun H, Xiang S, Wen C, Shen B. A single-center, open label, randomized, controlled study of hydroxychloroquine sulfate in the treatment of low risk PLA 2R-associated membranous nephropathy. BMC Nephrol 2024; 25:230. [PMID: 39030482 PMCID: PMC11264965 DOI: 10.1186/s12882-024-03670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of hydroxychloroquine sulfate (HCQ) in the treatment of low risk phospholipase A2 receptor (PLA2R)-associated membranous nephropathy (MN). METHODS A total of 110 patients with low risk PLA2R-associated MN were included in the study. Patients who met the inclusion and exclusion criteria were assigned randomly to two groups: the HCQ treatment group and the control group. The control group received standard supportive treatment according to the guidelines, while the HCQ treatment group received HCQ in addition to the supportive treatment. The clinical data of the patients were analyzed, with comparisons made at baseline and during the six-month follow-up period. Any adverse reactions were recorded. RESULTS The baseline data were comparable between the HCQ treatment group and the control group. At the end of the six-month follow-up period, the reductions in urine protein excretion and serum PLA2R antibody titer were more notable in the HCQ treatment group than those in the control group, with these differences being statistically significant (p < 0.05). Compared to the control group, the HCQ treatment group had fewer patients who were converted from low risk to moderate-to-high risk (p = 0.084). There were also no severe adverse reactions in the HCQ treatment group. CONCLUSION In patients with low risk PLA2R-associated MN, adequate supportive therapy combined with HCQ is superior to supportive therapy alone in controlling proteinuria and reducing serum PLA2R antibody titers. Additionally, our study demonstrated that the incidence of adverse reactions did not increase. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry (Registration No.: ChiCTR1900021757, Date of registration: 2019-03-08).
Collapse
Affiliation(s)
- Mei Mei
- Department of Nephrology & Rheumatology, People's Hospital of Shapingba District, Chongqing University Shapingba Hospital, School of Medicine,Chongqing University, Chongqing, China
- Department of Nephrology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Jun Zeng
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Zhengyang Liu
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Li Gong
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Li Fang
- Department of Nephrology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Quan Hu
- Department of Nephrology & Rheumatology, People's Hospital of Shapingba District, Chongqing University Shapingba Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Shaofen Huang
- Department of Nephrology & Rheumatology, People's Hospital of Shapingba District, Chongqing University Shapingba Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Liyin Chai
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Xinqing Chen
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Haili Sun
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Sha Xiang
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Chaolin Wen
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China
| | - Bingbing Shen
- Department of Nephrology, The First Hospital Affiliated to Army Medical University, Chongqing, China.
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine,Chongqing University, Chongqing, China.
| |
Collapse
|
6
|
Wang M, Yang J, Fang X, Lin W, Yang Y. Membranous nephropathy: pathogenesis and treatments. MedComm (Beijing) 2024; 5:e614. [PMID: 38948114 PMCID: PMC11214595 DOI: 10.1002/mco2.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Membranous nephropathy (MN), an autoimmune disease, can manifest at any age and is among the most common causes of nephrotic syndrome in adults. In 80% of cases, the specific etiology of MN remains unknown, while the remaining cases are linked to drug use or underlying conditions like systemic lupus erythematosus, hepatitis B virus, or malignancy. Although about one-third of patients may achieve spontaneous complete or partial remission with conservative management, another third face an elevated risk of disease progression, potentially leading to end-stage renal disease within 10 years. The identification of phospholipase A2 receptor as the primary target antigen in MN has brought about a significant shift in disease management and monitoring. This review explores recent advancements in the pathophysiology of MN, encompassing pathogenesis, clinical presentations, diagnostic criteria, treatment options, and prognosis, with a focus on emerging developments in pathogenesis and therapeutic strategies aimed at halting disease progression. By synthesizing the latest research findings and clinical insights, this review seeks to contribute to the ongoing efforts to enhance our understanding and management of this challenging autoimmune disorder.
Collapse
Affiliation(s)
- Mengqiong Wang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Jingjuan Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Xin Fang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Yi Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| |
Collapse
|
7
|
Zoccali C, Mallamaci F, Lightstone L, Jha V, Pollock C, Tuttle K, Kotanko P, Wiecek A, Anders HJ, Remuzzi G, Kalantar-Zadeh K, Levin A, Vanholder R. A new era in the science and care of kidney diseases. Nat Rev Nephrol 2024; 20:460-472. [PMID: 38575770 DOI: 10.1038/s41581-024-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Notable progress in basic, translational and clinical nephrology research has been made over the past five decades. Nonetheless, many challenges remain, including obstacles to the early detection of kidney disease, disparities in access to care and variability in responses to existing and emerging therapies. Innovations in drug development, research technologies, tissue engineering and regenerative medicine have the potential to improve patient outcomes. Exciting prospects include the availability of new drugs to slow or halt the progression of chronic kidney disease, the development of bioartificial kidneys that mimic healthy kidney functions, and tissue engineering techniques that could enable transplantable kidneys to be created from the cells of the recipient, removing the risk of rejection. Cell and gene therapies have the potential to be applied for kidney tissue regeneration and repair. In addition, about 30% of kidney disease cases are monogenic and could potentially be treated using these genetic medicine approaches. Systemic diseases that involve the kidney, such as diabetes mellitus and hypertension, might also be amenable to these treatments. Continued investment, communication, collaboration and translation of innovations are crucial to realize their full potential. In addition, increasing sophistication in exploring large datasets, implementation science, and qualitative methodologies will improve the ability to deliver transformational kidney health strategies.
Collapse
Affiliation(s)
- Carmine Zoccali
- Kidney Research Institute, New York City, NY, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Kidney (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Kidney Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Liz Lightstone
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Vivek Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, UK
- Prasanna School of Public Health, Manipal Academy of Medical Education, Manipal, India
| | - Carol Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, NSW, Australia
| | - Katherine Tuttle
- Providence Medical Research Center, Providence Inland Northwest, Spokane, Washington, USA
- Department of Medicine, University of Washington, Seattle, Spokane, Washington, USA
- Kidney Research Institute, Institute of Translational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Peter Kotanko
- Kidney Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027, Katowice, Poland
| | - Hans Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Bergamo, Italy
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, California, USA
- Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, Irvine, USA
- Veterans Affairs Healthcare System, Division of Nephrology, Long Beach, California, USA
| | - Adeera Levin
- University of British Columbia, Vancouver General Hospital, Division of Nephrology, Vancouver, British Columbia, Canada
- British Columbia, Provincial Kidney Agency, Vancouver, British Columbia, Canada
| | - Raymond Vanholder
- European Kidney Health Alliance, Brussels, Belgium
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
8
|
Seifert L, Riecken K, Zahner G, Hambach J, Hagenstein J, Dubberke G, Huber TB, Koch-Nolte F, Fehse B, Tomas NM. An antigen-specific chimeric autoantibody receptor (CAAR) NK cell strategy for the elimination of anti-PLA2R1 and anti-THSD7A antibody-secreting cells. Kidney Int 2024; 105:886-889. [PMID: 38309682 DOI: 10.1016/j.kint.2024.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Affiliation(s)
- Larissa Seifert
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hagenstein
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gudrun Dubberke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Huang B, Zhang Z, Sui W, Zhao L, Li Y, Feng L, Yang D, Zhou Y. Effectiveness of a novel rat model of off-target PLA2R1 knockout to renal impairment. Genomics 2024; 116:110796. [PMID: 38237745 DOI: 10.1016/j.ygeno.2024.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Phospholipase A2 receptor 1 (PLA2R1) plays a crucial role in various diseases, including membranous nephropathy. However, the precise implications of PLA2R1 deficiency remain poorly understood. In this study, we created PLA2R1 knockout rats to explore potential consequences resulting from the loss of the PLA2R1 gene. Unexpectedly, our PLA2R1 knockout rats exhibited symptoms resembling those of chronic kidney disease after an 8-week observation period. Notably, several rats developed persistent proteinuria, a hallmark of renal dysfunction. Immunohistochemical and immunofluorescence analyses revealed insignificant glomerular fibrosis, reduced podocyte count, and augmented glomerular expression of complement C3 (C3) compared to immunoglobin A (IgA) and immunoglobin G(IgG) in the rat model. These findings suggest that the loss of PLA2R1 may contribute to the pathogenesis of membranous nephropathy and related conditions. Our knockout rat model provides a valuable tool for investigating the underlying pathology of PLA2R1-associated diseases, and may facilitate the development of targeted therapies for membranous nephropathy and other related disorders.
Collapse
Affiliation(s)
- Bo Huang
- Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China; Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China; Nephrology Key Laboratory of Shanxi Province, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China; Hospital of integrated traditional Chinese and Western medicine in Shanxi province, Taiyuan, Shanxi 030012, China.
| | - Zitong Zhang
- Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China; Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China; Hospital of integrated traditional Chinese and Western medicine in Shanxi province, Taiyuan, Shanxi 030012, China
| | - Wendong Sui
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lu Zhao
- Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Yinyin Li
- Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Li Feng
- Laboratory Animal Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Daihe Yang
- Department of Anesthesiology, the Affiliated Second People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yun Zhou
- Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China; Hospital of integrated traditional Chinese and Western medicine in Shanxi province, Taiyuan, Shanxi 030012, China.
| |
Collapse
|
10
|
Tang X, Dai H, Hu Y, Liu W, Zhao Q, Jiang H, Feng Z, Zhang N, Rui H, Liu B. Experimental models for elderly patients with membranous nephropathy: Application and advancements. Exp Gerontol 2024; 185:112341. [PMID: 38042380 DOI: 10.1016/j.exger.2023.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Membranous nephropathy (MN) occurs predominantly in middle-aged and elderly individuals and ranks among the most prevalent etiologies of elderly nephrotic syndrome. As an autoimmune glomerular disorder characterized by glomerular basement membrane thickening and immune complex deposition, conventional MN animal models, including the Heymann nephritis rat model and the c-BSA mouse model, have laid a foundation for MN pathogenesis research. However, differences in target antigens between rodents and humans have impeded this work. In recent years, researchers have created antigen-specific MN animal models, primarily centered on PLA2R1 and THSD7A, employing diverse techniques that provide innovative in vivo research platforms for MN. Furthermore, significant advancements have been made in the development of in vitro podocyte models relevant to MN. This review compiles recent antigen-specific MN animal models and podocyte models, elucidates their immune responses and pathological characteristics, and offers insights into the future of MN experimental model development. Our aim is to provide a comprehensive resource for research into the pathogenesis of MN and the development of targeted therapies for older patients with MN to prolong lifespan and improve quality of life.
Collapse
Affiliation(s)
- Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Haoran Dai
- Department of Nephrology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Wenbin Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Naiqian Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China; Beijing Institute of Chinese Medicine, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China.
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Bonilla M, Hassanein M, Caza T, Jhaveri KD. Hope or hype? Clinicians' dilemma in the era of ever-expanding antigens in membranous nephropathy. Nephrol Dial Transplant 2023; 38:2666-2669. [PMID: 37442615 DOI: 10.1093/ndt/gfad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Marco Bonilla
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mohamed Hassanein
- Division of Nephrology and Hypertension, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Kenar D Jhaveri
- Department of Medicine, Glomerular Center at Northwell Health, Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| |
Collapse
|
12
|
Tomas NM, Schnarre A, Dehde S, Lucas R, Hermans-Borgmeyer I, Kretz O, Koellner SMS, Wiech T, Koch-Nolte F, Seifert L, Huber TB, Zahner G. Introduction of a novel chimeric active immunization mouse model of PLA2R1-associated membranous nephropathy. Kidney Int 2023; 104:916-928. [PMID: 37598854 DOI: 10.1016/j.kint.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
The phospholipase A2 receptor 1 (PLA2R1) is the major target antigen in patients with membranous nephropathy (MN), an antibody-mediated autoimmune glomerular disease. Investigation of MN pathogenesis has been hampered by the lack of reliable animal models. Here, we overcome this issue by generating a transgenic mouse line expressing a chimeric PLA2R1 (chPLA2R1) consisting of three human PLA2R1 domains (cysteine-rich, fibronectin type-II and CTLD1) and seven murine PLA2R1 domains (CTLD2-8) specifically in podocytes. Mice expressing the chPLA2R1 were healthy at birth and showed no major glomerular alterations when compared to mice with a wild-type PLA2R1 status. Upon active immunization with human PLA2R1 (hPLA2R1), chPLA2R1-positive mice developed anti-hPLA2R1 antibodies, a nephrotic syndrome, and all major histological features of MN, including granular deposition of mouse IgG and complement components in immunofluorescence and subepithelial electron-dense deposits and podocyte foot process effacement in electron microscopy. In order to investigate the role of the complement system in this model, we further crossed chPLA2R1-positive mice with mice lacking the central complement component C3 (C3-/- mice). Upon immunization with hPLA2R1, chPLA2R1-positive C3-/- mice had substantially less severe albuminuria and nephrotic syndrome when compared to chPLA2R1-positive mice with a wild-type C3 status. In conclusion, we introduce a novel active immunization model of PLA2R1-associated MN and demonstrate a pathogenic role of the complement system in this model.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Annabel Schnarre
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Koellner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Fu L, Ping J, Guo F, Song J, Luo M, Chen L. PLA2G12B Mediates Arachidonic Acid Metabolism through Activation of the NF-κB Pathway to Promote Membrane Nephropathy. Kidney Blood Press Res 2023; 48:652-665. [PMID: 37757774 DOI: 10.1159/000533805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION The disruption of podocyte structure and function are the main pathological mechanism of membranous nephropathy (MN). Phospholipases A2, Group XII B (PLA2G12B) was reported involved in the regulation of MN by interfering with arachidonic acid (AA) metabolism, but there is a lack of sufficient evidence. In this study, we investigated the role and molecular mechanism of PLA2G12B in MN. METHODS C57BL/6 mice were used to establish MN model to extract primary podocytes, then divided into control, model, si-phospholipases A2 receptor (PLA2R), PLA2G12B, PLA2G12B + si-PLA2R, PLA2G12B + nuclear factor kappa-B (NF-κB) inhibitor, PLA2G12B + NF-κB inhibitor + si-PLA2R groups. Hematoxylin-eosin staining and immunofluorescence were used to detect kidney histological arrangement, serum levels of cholesterol-related indices, and AA. Genes and proteins associated with metabolism and inflammatory factors were detected by quantitative real-time PCR and Western blot. RESULTS The results revealed that AA metabolites were activated in the MN model mice, and the expression of PLA2G12B and NF-κB pathway levels were elevated. Besides, cellular experiments demonstrated that prostaglandin I2 (PGI2), thromboxane A2 (TXA2), leukotriene B4 (LTB4), and NF-κB pathway were significantly increased in the PLA2G12B group. Also, PLA2G12B promotes apoptosis and suppresses cell activity in podocytes, and these effects could be antagonized by NF-κB inhibitors. Furthermore, with the inference of si-PLA2R, the NF-κB inhibitors' effects were reversed. CONCLUSION Promotional effects of PLA2G12B in primary MN are associated with the regulation of AA metabolism and NF-κB pathway.
Collapse
Affiliation(s)
- Linlin Fu
- Department of Pathology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Jinliang Ping
- Department of Pathology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Fei Guo
- Department of Traditional Chinese Medical Acupuncture, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Jiafeng Song
- Department of Pathology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Mingjun Luo
- Department of Hemodialysis Center, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Lijing Chen
- Department of Nephrology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| |
Collapse
|
14
|
Caravaca-Fontán F, Yandian F, Fervenza FC. Future landscape for the management of membranous nephropathy. Clin Kidney J 2023; 16:1228-1238. [PMID: 37529655 PMCID: PMC10387398 DOI: 10.1093/ckj/sfad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 08/03/2023] Open
Abstract
Among all glomerular diseases, membranous nephropathy (MN) is perhaps the one in which major progress has been made in recent decades, in both the understanding of the pathogenesis and treatment. Despite the overall significant response rates to these therapies-particularly rituximab and cyclical regimen based on corticosteroids and cyclophosphamide-cumulative experience over the years has shown, however, that 20%-30% of cases may confront resistant disease. Thus, these unmet challenges in the treatment of resistant forms of MN require newer approaches. Several emerging new agents-developed primarily for the treatment of hematological malignancies or rheumatoid diseases-are currently being evaluated in MN. Herein we conducted a narrative review on future therapeutic strategies in the disease. Among the different novel therapies, newer anti-CD20 agents (e.g. obinutuzumab), anti-CD38 (e.g. daratumumab, felzartamab), immunoadsorption or anti-complement therapies (e.g. iptacopan) have gained special attention. In addition, several technologies and innovations developed primarily for cancer (e.g. chimeric antigen receptor T-cell therapy, sweeping antibodies) seem particularly promising. In summary, the future therapeutic landscape in MN seems encouraging and will definitely move the management of this disease towards a more precision-based approach.
Collapse
Affiliation(s)
| | - Federico Yandian
- Department of Nephrology, Hospital de Clínicas “Dr Manuel Quintela”, Montevideo, Uruguay
| | | |
Collapse
|
15
|
Tomas NM, Dehde S, Meyer-Schwesinger C, Huang M, Hermans-Borgmeyer I, Maybaum J, Lucas R, von der Heide JL, Kretz O, Köllner SMS, Seifert L, Huber TB, Zahner G. Podocyte expression of human phospholipase A2 receptor 1 causes immune-mediated membranous nephropathy in mice. Kidney Int 2023; 103:297-303. [PMID: 36191868 DOI: 10.1016/j.kint.2022.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023]
Abstract
Antibody-mediated autoimmune pathologies like membranous nephropathy are difficult to model, particularly in the absence of local target antigen expression in model organisms such as mice and rats; as is the case for phospholipase A2 receptor 1 (PLA2R1), the major autoantigen in membranous nephropathy. Here, we generated a transgenic mouse line expressing the full-length human PLA2R1 in podocytes, which has no kidney impairment after birth. Beginning from the age of three weeks, these mice spontaneously developed anti-human PLA2R1 antibodies, a nephrotic syndrome with progressive albuminuria and hyperlipidemia, and the typical morphological signs of membranous nephropathy with granular glomerular deposition of murine IgG in immunofluorescence and subepithelial electron-dense deposits by electron microscopy. Importantly, human PLA2R1-expressing Rag2-/- mice, which lack mature and functioning B and T lymphocytes, developed neither anti-PLA2R1 antibodies nor proteinuria. Thus, our work demonstrates that podocyte expression of human PLA2R1 can induce membranous nephropathy with an underlying antibody-mediated pathogenesis in mice. Importantly, this antibody-mediated model enables proof-of-concept evaluations of antigen-specific treatment strategies, e.g., targeting autoantibodies or autoantibody-producing cells, and may further help understand the autoimmune pathogenesis of membranous nephropathy.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Silke Dehde
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ming Huang
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Maybaum
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Lucas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennie L von der Heide
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah M S Köllner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|