1
|
Kozak A, Lavrih E, Mikhaylov G, Turk B, Vasiljeva O. Navigating the Clinical Landscape of Liposomal Therapeutics in Cancer Treatment. Pharmaceutics 2025; 17:276. [PMID: 40006643 PMCID: PMC11859495 DOI: 10.3390/pharmaceutics17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Liposome-based targeted drug delivery systems represent a significant advancement in pharmaceutical science, offering distinct advantages that enhance the efficacy and safety of various therapies. These versatile carriers can encapsulate both hydrophilic and hydrophobic drugs, making them particularly valuable in clinical settings. This review explores the critical role of liposomal formulations in improving drug pharmacokinetics and minimizing side effects, especially in oncology, where targeted delivery to tumor cells is essential. Outlining the properties of different types of liposomes, we focus on the effects of these properties on the liposomes' targeting and drug release capabilities through innovative surface modifications and describe the most common methods of liposome preparation and characterization. Furthermore, this review provides an in-depth analysis of the properties and composition of liposomal-based nanocarriers, with a unique focus on ongoing clinical trials and recently approved therapies. It offers a comprehensive overview of the latest advancements in pre-clinical research and highlights the critical progress in clinical development, offering insights into the clinical impact and regulatory approvals. Ultimately, this review underscores the transformative potential of liposomal nanocarriers in modern therapeutics, suggesting avenues for future innovations and clinical breakthroughs.
Collapse
Affiliation(s)
- Andreja Kozak
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (A.K.); (E.L.); (G.M.); (B.T.)
| | - Ernestina Lavrih
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (A.K.); (E.L.); (G.M.); (B.T.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (A.K.); (E.L.); (G.M.); (B.T.)
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (A.K.); (E.L.); (G.M.); (B.T.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (A.K.); (E.L.); (G.M.); (B.T.)
| |
Collapse
|
2
|
Cheng Z, Huang H, Yin M, Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. Exp Hematol Oncol 2025; 14:11. [PMID: 39891180 PMCID: PMC11786384 DOI: 10.1186/s40164-025-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Liposomes and lipid nanoparticles are common lipid-based drug delivery systems and play important roles in cancer treatment and vaccine manufacture. Although significant progress has been made with these lipid-based nanocarriers in recent years, efficient clinical translation of active targeted liposomal nanocarriers remains extremely challenging. In this review, we focus on targeted liposomes, stimuli-responsive strategy and combined therapy in cancer treatment. We also summarize advances of liposome and lipid nanoparticle applications in nucleic acid delivery and tumor vaccination. In addition, we discuss limitations and challenges in the clinical translation of these lipid nanomaterials and make recommendations for the future research in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Meilong Yin
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Chen Y, Tong X, Lu R, Zhang Z, Ma T. All-trans retinoic acid in hematologic disorders: not just acute promyelocytic leukemia. Front Pharmacol 2024; 15:1404092. [PMID: 39027338 PMCID: PMC11254857 DOI: 10.3389/fphar.2024.1404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
All-trans retinoic acid (ATRA) plays a role in tissue development, neural function, reproduction, vision, cell growth and differentiation, tumor immunity, and apoptosis. ATRA can act by inducing autophagic signaling, angiogenesis, cell differentiation, apoptosis, and immune function. In the blood system ATRA was first used with great success in acute promyelocytic leukemia (APL), where ATRA differentiated leukemia cells into mature granulocytes. ATRA can play a role not only in APL, but may also play a role in other hematologic diseases such as immune thrombocytopenia (ITP), myelodysplastic syndromes (MDS), non-APL acute myeloid leukemia (AML), aplastic anemia (AA), multiple myeloma (MM), etc., especially by regulating mesenchymal stem cells and regulatory T cells for the treatment of ITP. ATRA can also increase the expression of CD38 expressed by tumor cells, thus improving the efficacy of daratumumab and CD38-CART. In this review, we focus on the mechanism of action of ATRA, its role in various hematologic diseases, drug combinations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Tong
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Rongyuan Lu
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Zhengfu Zhang
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| |
Collapse
|
4
|
Zarei H, Movahedin M, Ganji F, Ghiaseddin A. Retinoic acid-releasing scaffold based on chitosan hydrogel and testis decellular plates. BIOIMPACTS : BI 2024; 15:30007. [PMID: 39963568 PMCID: PMC11830144 DOI: 10.34172/bi.30007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2025]
Abstract
Introduction The use of releasing scaffolds is promising for testes tissue engineering. Chitosan (CS) is a natural biopolymer extensively used as a delivery system. The decellularized testis provides a structure resembling natural extracellular matrix (ECM). All-trans retinoic acid (atRA) is an important factor for spermatogonia differentiation, meiosis completion, and mature sperm release. In this study, thermosensitive CS/βGP hydrogel was served as a novel atRA-releasing support for testis decellular plates (TDPs). Methods The CS/βGP hydrogel was evaluated for gelation time, morphology, wettability, cytocompatibility, and atRA-releasing behavior. Mouse testes were treated with 1% SDS and evaluated for decellularization efficacy through morphological assessments, DNA content assays, and DAPI staining. TDPs were obtained from the decellularized testes and placed on an atRA-releasing CS/βGP hydrogel support. Results The CS/βGP hydrogels were prepared with different formulations. It was found that increasing the βGP concentration significantly decreased the gelation time. The addition of atRA did not considerably affect the hydrophilicity of hydrogel. The in vitro release studies showed a sustained atRA release behavior, although an initial low burst release was recorded. Also, increasing the amount of atRA led to a decrease in the rate of drug release. The decellularization procedure successfully removed cells while preserving the ECM. The atRA-releasing CS-TDP scaffold was found to be non-toxic with good biocompatibility. Conclusion Results showed that the novel atRA-releasing CS-TDP scaffold can sustainably deliver atRA to the culture system and create a cytocompatible environment for testicular cells. Therefore, this scaffold may be useful in developing new tissue engineering approaches for various types of male infertility diseases.
Collapse
Affiliation(s)
- Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fariba Ganji
- Biomedical Engineering Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ali Ghiaseddin
- Adjunct Research Associate Professor at Chemistry Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Kesse S, Xu Y, Shi S, Jin S, Ullah S, Dai Y, He M, Zheng A, Xu F, Du Z, Alolga RN, Peng J. MDSC-targeted liposomal all-trans retinoic acid suppresses mMdscs and improves immunotherapy in HBV infection. Expert Opin Drug Deliv 2024; 21:347-363. [PMID: 38406829 DOI: 10.1080/17425247.2024.2317936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are evolving as a prominent determinant in cancer occurrence and development and are functionally found to suppress T cells in cancer. Not much research is done regarding its involvement in viral infections. This research was designed to investigate the role of MDSCs in hepatitis B virus (HBV) infection and how targeting these cells with our novel all-trans retinoic acid encapsulated liposomal formulation could improve immunotherapy in C57BL/6 mice. METHODS Ten micrograms (10 μg) of plasmid adeno-associated virus (pAAV/HBV 1.2, genotype A) was injected hydrodynamically via the tail vein of C57BL/6 mice. An all-trans retinoic acid encapsulated liposomal formulation (L-ATRA) with sustained release properties was used in combination with tenofovir disoproxil fumarate (TDF), a nucleotide analog reverse transcriptase inhibitor (nRTI) to treat the HBV infection. The L-ATRA formulation was given at a dose of 5 mg/kg intravenously (IV) twice a week. The TDF was given orally at 30 mg/kg daily. RESULTS Our results revealed that L-ATRA suppresses MDSCs in HBV infected mice and enhanced T-cell proliferation in vitro. In vivo studies showed higher and improved immunotherapeutic effect in mice that received L-ATRA and TDF concurrently in comparison with the groups that received monotherapy. Lower HBV DNA copies, lower concentrations of HBsAg and HBeAg, lower levels of ALT and AST and less liver damage were seen in the mice that received the combination therapy of L-ATRA + TDF. CONCLUSIONS In effect, targeting MDSCs with the combination of L-ATRA and TDF effectively reduced mMDSC and improved immunotherapy in the HBV infected mice. Targeting MDSCs could provide a breakthrough in the fight against hepatitis B virus infection.
Collapse
Affiliation(s)
- Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogen Plant Resources in Western Yunnan, Dali University, Dali, China
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Jin
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Shafi Ullah
- Shanghai Institute of Digestive Diseases, Renji Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongchao Dai
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Miao He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogen Plant Resources in Western Yunnan, Dali University, Dali, China
| | - Anjie Zheng
- HighField Biopharmaceuticals Inc, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengwei Xu
- HighField Biopharmaceuticals Inc, Hangzhou, China
| | - Zixiu Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C, Huang J, Wei Q, Zhang T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct Target Ther 2023; 8:205. [PMID: 37208386 DOI: 10.1038/s41392-023-01462-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
As one of the four major means of cancer treatment including surgery, radiotherapy (RT), chemotherapy, immunotherapy, RT can be applied to various cancers as both a radical cancer treatment and an adjuvant treatment before or after surgery. Although RT is an important modality for cancer treatment, the consequential changes caused by RT in the tumor microenvironment (TME) have not yet been fully elucidated. RT-induced damage to cancer cells leads to different outcomes, such as survival, senescence, or death. During RT, alterations in signaling pathways result in changes in the local immune microenvironment. However, some immune cells are immunosuppressive or transform into immunosuppressive phenotypes under specific conditions, leading to the development of radioresistance. Patients who are radioresistant respond poorly to RT and may experience cancer progression. Given that the emergence of radioresistance is inevitable, new radiosensitization treatments are urgently needed. In this review, we discuss the changes in irradiated cancer cells and immune cells in the TME under different RT regimens and describe existing and potential molecules that could be targeted to improve the therapeutic effects of RT. Overall, this review highlights the possibilities of synergistic therapy by building on existing research.
Collapse
Affiliation(s)
- Siyu Guo
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Tang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengfeng Xin
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chao Ni
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Qichun Wei
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Ting Zhang
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Fan R, De Beule N, Maes A, De Bruyne E, Menu E, Vanderkerken K, Maes K, Breckpot K, De Veirman K. The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers. Front Immunol 2022; 13:1016059. [PMID: 36304465 PMCID: PMC9592826 DOI: 10.3389/fimmu.2022.1016059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of immunotherapeutic approaches in hematological cancers is partially hampered by the presence of an immunosuppressive microenvironment. Myeloid-derived suppressor cells (MDSC) are key components of this suppressive environment and are frequently associated with tumor cell survival and drug resistance. Based on their morphology and phenotype, MDSC are commonly subdivided into polymorphonuclear MDSC (PMN-MDSC or G-MDSC) and monocytic MDSC (M-MDSC), both characterized by their immunosuppressive function. The phenotype, function and prognostic value of MDSC in hematological cancers has been intensively studied; however, the therapeutic targeting of this cell population remains challenging and needs further investigation. In this review, we will summarize the prognostic value of MDSC and the different attempts to target MDSC (or subtypes of MDSC) in hematological cancers. We will discuss the benefits, challenges and opportunities of using MDSC-targeting approaches, aiming to enhance anti-tumor immune responses of currently used cellular and non-cellular immunotherapies.
Collapse
Affiliation(s)
- Rong Fan
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nathan De Beule
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anke Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Center for Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Kim De Veirman,
| |
Collapse
|