1
|
Stewart J, Damania B. Innate Immune Recognition of EBV. Curr Top Microbiol Immunol 2025. [PMID: 40399572 DOI: 10.1007/82_2025_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Epstein-Barr virus (EBV) is a very successful human pathogen, with ~95% seroprevalence worldwide (Mentzer et al, Nat Commun 13:1818, 2022). If contracted in early childhood, EBV infection is typically asymptomatic; however, infections in adolescence and adulthood can manifest as infectious mononucleosis (IM). The innate immune response is the first line of defense, and its function is critical for controlling EBV infection. During EBV infection, components of the virus, known as pathogen-associated molecular patterns (PAMPs), are recognized by germline-encoded pattern recognition receptors (PRRs). PRRs are found on both non-immune and immune cells including antigen-presenting cells, such as macrophages, monocytes, dendritic cells, natural killer (NK), and mast cells. PRRs are also found on B cells and epithelial cells, the primary targets of EBV infection. Without immune surveillance, EBV can transform cells inducing various malignancies. Conversely, a prolonged innate immune response can lead to chronic inflammation which increases the likelihood of cancer. This review discusses innate immune recognition of EBV and its associated diseases.
Collapse
Affiliation(s)
- Jessica Stewart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Agnello L, Masucci A, Tamburello M, Vassallo R, Massa D, Giglio RV, Midiri M, Gambino CM, Ciaccio M. The Role of Killer Ig-like Receptors in Diseases from A to Z. Int J Mol Sci 2025; 26:3242. [PMID: 40244151 PMCID: PMC11989319 DOI: 10.3390/ijms26073242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Killer Ig-like Receptors (KIRs) regulate immune responses, maintaining the balance between activation and inhibition of the immune system. KIRs are expressed on natural killer cells and some CD8 T cells and interact with HLA class I molecules, influencing various physiological and pathological processes. KIRs' polymorphism creates a variability in immune responses among individuals. KIRs are involved in autoimmune disorders, cancer, infections, neurological diseases, and other diseases. Specific combinations of KIRs and HLA are linked to several diseases' susceptibility, progression, and outcomes. In particular, the balance between inhibitory and activating KIRs can determine how the immune system responds to pathogens and tumors. An imbalance can lead to an excessive response, contributing to autoimmune diseases, or an inadequate response, allowing immune evasion by pathogens or cancer cells. The increasing number of studies on KIRs highlights their essential role as diagnostic and prognostic biomarkers and potential therapeutic targets. This review provides a comprehensive overview of the role of KIRs in all clinical conditions and diseases, listed alphabetically, where they are analyzed.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Davide Massa
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Rosaria Vincenza Giglio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Mauro Midiri
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
3
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
4
|
Sausen DG, Basith A, Muqeemuddin S. EBV and Lymphomagenesis. Cancers (Basel) 2023; 15:cancers15072133. [PMID: 37046794 PMCID: PMC10093459 DOI: 10.3390/cancers15072133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The clinical significance of Epstein–Barr virus (EBV) cannot be understated. Not only does it infect approximately 90% of the world’s population, but it is also associated with numerous pathologies. Diseases linked to this virus include hematologic malignancies such as diffuse large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma, primary CNS lymphoma, and NK/T-cell lymphoma, epithelial malignancies such as nasopharyngeal carcinoma and gastric cancer, autoimmune diseases such as multiple sclerosis, Graves’ disease, and lupus. While treatment for these disease states is ever evolving, much work remains to more fully elucidate the relationship between EBV, its associated disease states, and their treatments. This paper begins with an overview of EBV latency and latency-associated proteins. It will then review EBV’s contributions to select hematologic malignancies with a focus on the contribution of latent proteins as well as their associated management.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ayeman Basith
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | |
Collapse
|
5
|
Filling the Gap: The Immune Therapeutic Armamentarium for Relapsed/Refractory Hodgkin Lymphoma. J Clin Med 2022; 11:jcm11216574. [PMID: 36362802 PMCID: PMC9656939 DOI: 10.3390/jcm11216574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Despite years of clinical progress which made Hodgkin lymphoma (HL) one of the most curable malignancies with conventional chemotherapy, refractoriness and recurrence may still affect up to 20–30% of patients. The revolution brought by the advent of immunotherapy in all kinds of neoplastic disorders is more than evident in this disease because anti-CD30 antibodies and checkpoint inhibitors have been able to rescue patients previously remaining without therapeutic options. Autologous hematopoietic cell transplantation still represents a significant step in the treatment algorithm for chemosensitive HL; however, the possibility to induce complete responses after allogeneic transplant procedures in patients receiving reduced-intensity conditioning regimens informs on its sensitivity to immunological control. Furthermore, the investigational application of adoptive T cell transfer therapies paves the way for future indications in this setting. Here, we seek to provide a fresh and up-to-date overview of the new immunotherapeutic agents dominating the scene of relapsed/refractory HL. In this optic, we will also review all the potential molecular mechanisms of tumor resistance, theoretically responsible for treatment failures, and we will discuss the place of allogeneic stem cell transplantation in the era of novel therapies.
Collapse
|
6
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|