1
|
Gonzalez-Magaldi M, Gullapalli A, Papoulas O, Liu C, Leung AYH, Guo L, Brilot AF, Marcotte EM, Ke Z, Leahy DJ. Structure and organization of full-length epidermal growth factor receptor in extracellular vesicles by cryo-electron tomography. Proc Natl Acad Sci U S A 2025; 122:e2424678122. [PMID: 40455995 DOI: 10.1073/pnas.2424678122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/22/2025] [Indexed: 06/11/2025] Open
Abstract
We report here transport of full-length epidermal growth factor receptor (EGFR), Insulin Receptor, 7-pass transmembrane receptor Smoothened, and 13-pass Sodium-iodide symporter to extracellular vesicles (EVs) for structural and functional studies. Mass spectrometry confirmed the transported proteins are the most abundant in EV membranes, and the presence of many receptor-interacting proteins in EVs demonstrates their utility for characterizing membrane protein interactomes. Cryo-electron tomography of EGFR-containing EVs reveals that EGFR forms clusters in both the presence and absence of EGF with a ~3 nm gap between the inner membrane and cytoplasmic density. EGFR extracellular region (ECR) dimers do not form regular arrays in these clusters. Subtomogram averaging of the 150 kDa EGF-bound EGFR ECR dimer yielded a 15 Å map into which the crystal structure of the ligand-bound EGFR ECR dimer fits well. These findings refine our understanding of EGFR activation, clustering, and signaling and establish EVs as a versatile platform for structural and functional characterization of human membrane proteins in cell-derived membranes.
Collapse
Affiliation(s)
| | - Anuradha Gullapalli
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Chang Liu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Adelaide Y-H Leung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Luqiang Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Axel F Brilot
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX 78712
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Zunlong Ke
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712
| | - Daniel J Leahy
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
2
|
Guan X, Verma AK, Liu Q, Palacios M, Odle AE, Perlman S, Du L. Glycosylated Receptor-Binding-Domain-Targeting Mucosal Vaccines Protect Against SARS-CoV-2 Omicron and MERS-CoV. Vaccines (Basel) 2025; 13:293. [PMID: 40266218 PMCID: PMC11946235 DOI: 10.3390/vaccines13030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The pathogenic coronaviruses (CoVs) MERS-CoV and SARS-CoV-2, which are responsible for the MERS outbreak and the COVID-19 pandemic, respectively, continue to infect humans, with significant adverse outcomes. There is a continuing need to develop mucosal vaccines against these respiratory viral pathogens to prevent entry and replication at mucosal sites. The receptor-binding domain (RBD) of the CoV spike (S) protein is a critical vaccine target, and glycan masking is a unique approach for designing subunit vaccines with improved neutralizing activity. METHODS We evaluated the efficacy of mucosal immunity, broad neutralizing activity, and cross-protection afforded by a combined glycosylated mucosal subunit vaccine encoding the RBDs of the original SARS-CoV-2 strain (SARS2-WT-RBD), the Omicron-XBB.1.5 variant (SARS2-Omi-RBD), and MERS-CoV (MERS-RBD). RESULTS Intranasal administration of the three-RBD protein cocktail induced effective, durable IgA and systemic IgG antibodies specific for the S protein of these CoVs, thereby neutralizing infection by pseudotyped SARS-CoV-2-WT, Omicron-XBB.1.5, and MERS-CoV. The mucosal vaccine cocktail protected immunized mice from challenge with SARS-CoV-2 Omicron-XBB.1.5 and MERS-CoV, leading to a significant reduction in the viral titers in the lungs. By contrast, the individual glycosylated RBD proteins only induced such immune responses and neutralizing antibodies against either SARS-CoV-2 or MERS-CoV, protecting against subsequent challenge with either SARS-CoV-2 or MERS-CoV; they did not provide simultaneous protection against both CoVs. CONCLUSIONS This study describes a unique strategy for designing efficacious mucosal subunit vaccines that induce durable mucosal immunity, cross-neutralizing activity, and cross-protection against SARS-CoV-2 and MERS-CoV, highlighting the potential for the design of mucosal vaccines against other pathogens.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Qian Liu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Melissa Palacios
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Abby E. Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Gonzalez-Magaldi M, Gullapalli A, Papoulas O, Liu C, Leung AYH, Guo L, Brilot A, Marcotte EM, Ke Z, Leahy DJ. Structure and organization of full-length Epidermal Growth Factor Receptor in extracellular vesicles by cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625301. [PMID: 39651119 PMCID: PMC11623583 DOI: 10.1101/2024.11.25.625301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We report here transport of the Epidermal Growth Factor Receptor (EGFR), Insulin Receptor, 7-pass transmembrane receptor Smoothened, and 13-pass Sodium-iodide symporter to extracellular vesicles (EVs) for structural and functional studies. Mass spectrometry confirmed the transported proteins as the most abundant in EV membranes, and the presence of many receptor-interacting proteins demonstrates the utility of EVs for characterizing membrane protein interactomes. Cryo-electron tomography of EGFR-containing EVs reveals that EGFR forms clusters in the presence of EGF with a ∼3 nm gap between the inner membrane and cytoplasmic density. EGFR extracellular regions do not form regular arrays, suggesting that clustering is mediated by the intracellular region. Subtomogram averaging of the EGFR extracellular region (ECR) yielded a 15 Å map into which the crystal structure of the ligand-bound EGFR ECR dimer fits well. These findings refine our understanding of EGFR activation, clustering, and signaling, and they establish EVs as a versatile platform for structural and functional characterization of human membrane proteins in a native-like environment. Significance Statement Atomic or near-atomic resolution structural studies of proteins embedded in cell membranes have proven challenging. We show that transporting integral membrane proteins to cell-derived extracellular vesicles enables structural and functional studies of human membrane proteins in a native membrane environment. We have used this approach to visualize an active form of full-length Epidermal Growth Factor Receptor (EGFR) and show that it forms clusters in the membrane and projects its cytoplasmic signaling domains ∼3 nm away from the membrane surface. EGFR is essential for normal development, but abnormal EGFR activity is associated with several human cancers and is the target of many anticancer therapies. Our studies refine current models of how ligand binding to EGFR transmits signals across cell membranes.
Collapse
|
5
|
Wood L, Hughes J, Trussell M, Bishop AL, Griffin R. Fasting before Intra-Gastric Dosing with Antigen Improves Intestinal Humoral Responses in Syrian Hamsters. Vaccines (Basel) 2024; 12:572. [PMID: 38932302 PMCID: PMC11209237 DOI: 10.3390/vaccines12060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Oral vaccines, unlike injected, induce intestinal secretory immunoglobulin A (sIgA) mimicking our natural defense against gut pathogens. We previously observed sIgA responses after administering the Clostridioides difficile colonisation factor CD0873 orally in enteric capsules to hamsters. Enteric-coated capsules are designed to resist dissolution in the stomach and disintegrate only at the higher pH of the small intestine. However, the variable responses between animals led us to speculate suboptimal transit of antigens to the small intestine. The rate of gastric emptying is a controlling factor in the passage of oral drugs for subsequent availability in the small intestine for absorption. Whilst in humans, food delays gastric emptying, in rats, capsules can empty quicker from fed stomachs than from fasted. To test in hamsters if fasting improves the delivery of antigens to the small intestine, as inferred from the immune responses generated, 24 animals were dosed intragastrically with enteric capsules containing recombinant CD0873. Twelve hamsters were fasted for 12 h prior to each dose and the other 12 fed. Significantly higher sIgA titres, with significantly greater bacterial-adherence-blocking activity, were detected in small intestinal lavages in the fasted group. We conclude that fasting in hamsters improves intestinal delivery leading to more robust responses.
Collapse
Affiliation(s)
- Liam Wood
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Jaime Hughes
- School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Mark Trussell
- Bio Support Unit, The University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Anne L. Bishop
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ruth Griffin
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
6
|
Liu X, Song H, Jiang J, Gao X, Yi Y, Shang Y, Li J, Li D, Zeng Z, Li Y, Zhang Z. Baculovirus-expressed self-assembling SARS-CoV-2 nanoparticle vaccines targeting the S protein induce protective immunity in mice. Process Biochem 2023; 129:200-208. [PMID: 37007452 PMCID: PMC10038678 DOI: 10.1016/j.procbio.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Spike (S) protein, a homotrimeric glycoprotein, is the most important antigen target for SARS-CoV-2 vaccines. A complete simulation of the advanced structure of this homotrimer during subunit vaccine development is the most likely method to improve its immunoprotective effects. In this study, preparation strategies for the S protein receptor-binding domain, S1 region, and ectodomain trimer nanoparticles were designed using ferritin nanoparticle self-assembly technology. The Bombyx mori baculovirus expression system was used to prepare three nanoparticle vaccines with high expression levels recorded in silkworms. The results in mice showed that the nanoparticle vaccine prepared using this strategy could induce immune responses when administered via both the subcutaneous administration and oral routes. Given the stability of these ferritin-based nanoparticle vaccines, an easy-to-use and low-cost oral immunization strategy can be employed in vaccine blind areas attributed to shortages of ultralow-temperature equipment and medical resources in underdeveloped areas. Oral vaccines are also promising candidates for limiting the spread of SARS-CoV-2 in domestic and farmed animals, especially in stray and wild animals.
Collapse
Affiliation(s)
- Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianmin Jiang
- Key Laboratory of Vaccine, Prevention and control of Infectious disease of Zhejiang Province, Zhejiang Provincial Center For Disease Control And Prevention, Hangzhou, Zhejiang Province, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhu Yi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuting Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zeng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Oral Administration of Universal Bacterium-Vectored Nucleocapsid-Expressing COVID-19 Vaccine is Efficacious in Hamsters. Microbiol Spectr 2023:e0503522. [PMID: 36916971 PMCID: PMC10100875 DOI: 10.1128/spectrum.05035-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oral delivery of an inexpensive COVID-19 (coronavirus disease 2019) vaccine could dramatically improve immunization rates, especially in low- and middle-income countries. Previously, we described a potential universal COVID-19 vaccine, rLVS ΔcapB/MN, comprising a replicating bacterial vector, LVS (live vaccine strain) ΔcapB, expressing the highly conserved SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) membrane and nucleocapsid (N) proteins, which, when administered intradermally or intranasally, protects hamsters from severe COVID-19-like disease after high-dose SARS-CoV-2 respiratory challenge. Here, we show that oral administration of the vaccine also protects against high-dose SARS-CoV-2 respiratory challenge; its protection is comparable to that of intradermal, intranasal, or subcutaneous administration. Hamsters were protected against severe weight loss and lung pathology and had reduced oropharyngeal and lung virus titers. Protection against weight loss and histopathology by the vaccine, which in mice induces splenic and lung cell interferon gamma in response to N protein stimulation, was correlated in hamsters with pre-challenge serum anti-N TH1-biased IgG (IgG2/3). Thus, rLVS ΔcapB/MN has potential as an oral universal COVID-19 vaccine. IMPORTANCE The COVID-19 pandemic continues to rage into its fourth year worldwide. To protect the world's population most effectively from severe disease, hospitalization, and death, a vaccine is needed that is resistant to rapidly emerging viral variants of the causative agent SARS-CoV-2, inexpensive to manufacture, store, and transport, and easy to administer. Ideally, such a vaccine would be capable of oral administration, especially in resource-poor countries of the world where there are shortages of needles, syringes and trained personnel to administer injectable vaccines. Here, we show that oral administration of a bacterium-vectored vaccine meeting all these criteria protects naturally susceptible Syrian hamsters from severe COVID-19-like disease, including severe weight loss and lung pathology, after high-dose SARS-CoV-2 respiratory challenge. As the vaccine is based upon inducing immunity to highly conserved SARS-CoV-2 membrane and nucleocapsid proteins, as opposed to the rapidly mutating Spike protein, it should remain resistant to newly emerging SARS-CoV-2 variants.
Collapse
|
8
|
Chu KB, Quan FS. Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced? Viruses 2023; 15:v15020392. [PMID: 36851606 PMCID: PMC9965150 DOI: 10.3390/v15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022; 14:v14061188. [PMID: 35746659 PMCID: PMC9228950 DOI: 10.3390/v14061188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease, making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2 also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung immune response and inflammation through blood circulation. The gastrointestinal microbiome may be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates and maintaining intestinal microbiota homeostasis.
Collapse
|